Spaces:
Running
Running
File size: 18,877 Bytes
106aab5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack
import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from mcp.client.sse import sse_client
from anthropic import Anthropic
from datasets import load_dataset
import pandas as pd
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
class MCPClientWrapper:
def __init__(self):
self.session = None
self.exit_stack = None
self.anthropic = None
self.tools = []
self.dataset = None
self.validation_results = []
def set_api_key(self, api_key: str) -> str:
"""Set the Anthropic API key and initialize the client"""
if not api_key or not api_key.strip():
return "Please enter a valid Anthropic API key"
try:
self.anthropic = Anthropic(api_key=api_key.strip())
return "API key set successfully β
"
except Exception as e:
return f"Failed to set API key: {str(e)}"
def connect(self, server_input: str) -> str:
if not self.anthropic:
return "Please set your Anthropic API key first"
return loop.run_until_complete(self._connect(server_input))
async def _connect(self, server_input: str) -> str:
if self.exit_stack:
await self.exit_stack.aclose()
self.exit_stack = AsyncExitStack()
try:
# Check if input is a URL (starts with http:// or https://)
if server_input.startswith(('http://', 'https://')):
# Connect via SSE
read, write = await self.exit_stack.enter_async_context(
sse_client(server_input)
)
connection_type = "SSE URL"
else:
# Connect via stdio (local file)
is_python = server_input.endswith('.py')
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_input],
env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
)
read, write = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
connection_type = "Local script"
self.session = await self.exit_stack.enter_async_context(
ClientSession(read, write)
)
await self.session.initialize()
response = await self.session.list_tools()
self.tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]
tool_names = [tool["name"] for tool in self.tools]
return f"Connected to MCP server via {connection_type}. Available tools: {', '.join(tool_names)}"
except Exception as e:
return f"Connection failed: {str(e)}"
def load_dataset(self) -> tuple:
"""Load the TAAIC Phase1 validation dataset"""
try:
self.dataset = load_dataset("aitxchallenge/Phase1_Model_Validator", split="train")
dataset_info = f"Dataset loaded successfully! {len(self.dataset)} validation cases available."
# Create a preview of the dataset
df = pd.DataFrame(self.dataset)
preview = df.head().to_string()
return (
dataset_info,
gr.Button("π Validate", interactive=True),
gr.Textbox(value=f"Dataset Preview:\n{preview}", visible=True)
)
except Exception as e:
return (
f"Failed to load dataset: {str(e)}",
gr.Button("π₯ Load Dataset", interactive=True),
gr.Textbox(visible=False)
)
def validate_tools(self) -> str:
"""Run validation on all dataset cases"""
if not self.anthropic:
return "Please set your Anthropic API key first."
if not self.dataset:
return "Please load the dataset first."
if not self.session:
return "Please connect to an MCP server first."
return loop.run_until_complete(self._run_validation())
async def _run_validation(self) -> str:
"""Async validation runner"""
self.validation_results = []
total_cases = len(self.dataset)
passed = 0
failed = 0
for i, case in enumerate(self.dataset):
try:
# Extract test case information
query = case.get('query', case.get('question', ''))
expected_output = case.get('expected_output', case.get('expected', ''))
test_id = case.get('id', f'test_{i}')
# Run the query through the MCP tools
result = await self._validate_single_case(query, expected_output, test_id)
self.validation_results.append(result)
if result['passed']:
passed += 1
else:
failed += 1
except Exception as e:
failed += 1
self.validation_results.append({
'test_id': test_id,
'query': query,
'error': str(e),
'passed': False
})
# Generate validation report
report = f"""
VALIDATION COMPLETE
==================
Total Cases: {total_cases}
Passed: {passed}
Failed: {failed}
Success Rate: {(passed/total_cases)*100:.1f}%
DETAILED RESULTS:
"""
for result in self.validation_results:
status = "β
PASS" if result['passed'] else "β FAIL"
report += f"\n{status} [{result['test_id']}] {result['query'][:50]}..."
if not result['passed'] and 'error' in result:
report += f"\n Error: {result['error']}"
return report
async def _validate_single_case(self, query: str, expected_output: str, test_id: str) -> Dict[str, Any]:
"""Validate a single test case"""
try:
# Send query to Claude with MCP tools
claude_messages = [{"role": "user", "content": query}]
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
# Process tool calls if any
actual_output = ""
for content in response.content:
if content.type == 'text':
actual_output += content.text
elif content.type == 'tool_use':
tool_result = await self.session.call_tool(content.name, content.input)
actual_output += str(tool_result.content)
# Simple validation logic - you may want to customize this
passed = self._validate_output(actual_output, expected_output)
return {
'test_id': test_id,
'query': query,
'expected': expected_output,
'actual': actual_output,
'passed': passed
}
except Exception as e:
return {
'test_id': test_id,
'query': query,
'error': str(e),
'passed': False
}
def _validate_output(self, actual: str, expected: str) -> bool:
"""Basic output validation - customize based on your needs"""
# This is a simple implementation - you may want more sophisticated validation
if not expected:
return True # If no expected output specified, consider it passed
# You can implement more sophisticated matching here
# For now, using simple substring matching
return expected.lower() in actual.lower()
def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
if not self.anthropic:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please set your Anthropic API key first."}
], gr.Textbox(value="")
if not self.session:
return history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "Please connect to an MCP server first."}
], gr.Textbox(value="")
new_messages = loop.run_until_complete(self._process_query(message, history))
return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
claude_messages = []
for msg in history:
if isinstance(msg, ChatMessage):
role, content = msg.role, msg.content
else:
role, content = msg.get("role"), msg.get("content")
if role in ["user", "assistant", "system"]:
claude_messages.append({"role": role, "content": content})
claude_messages.append({"role": "user", "content": message})
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
tools=self.tools
)
result_messages = []
for content in response.content:
if content.type == 'text':
result_messages.append({
"role": "assistant",
"content": content.text
})
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input
result_messages.append({
"role": "assistant",
"content": f"I'll only use the {tool_name} tool to help answer your question.",
"metadata": {
"title": f"Using tool: {tool_name}",
"log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
"status": "pending",
"id": f"tool_call_{tool_name}"
}
})
result_messages.append({
"role": "assistant",
"content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
"metadata": {
"parent_id": f"tool_call_{tool_name}",
"id": f"params_{tool_name}",
"title": "Tool Parameters"
}
})
try:
result = await self.session.call_tool(tool_name, tool_args)
if result_messages and "metadata" in result_messages[-2]:
result_messages[-2]["metadata"]["status"] = "done"
result_messages.append({
"role": "assistant",
"content": "Here are the results from the tool:",
"metadata": {
"title": f"Tool Result for {tool_name}",
"status": "done",
"id": f"result_{tool_name}"
}
})
result_content = result.content
if isinstance(result_content, list):
result_content = "\n".join(str(item) for item in result_content)
try:
result_json = json.loads(result_content)
if isinstance(result_json, dict) and "type" in result_json:
if result_json["type"] == "image" and "url" in result_json:
result_messages.append({
"role": "assistant",
"content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"image_{tool_name}",
"title": "Generated Image"
}
})
else:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
except:
result_messages.append({
"role": "assistant",
"content": "```\n" + result_content + "\n```",
"metadata": {
"parent_id": f"result_{tool_name}",
"id": f"raw_result_{tool_name}",
"title": "Raw Output"
}
})
claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
next_response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=claude_messages,
)
if next_response.content and next_response.content[0].type == 'text':
result_messages.append({
"role": "assistant",
"content": next_response.content[0].text
})
except Exception as e:
result_messages.append({
"role": "assistant",
"content": f"Error calling tool {tool_name}: {str(e)}",
"metadata": {
"title": f"Error - {tool_name}",
"status": "error",
"id": f"error_{tool_name}"
}
})
return result_messages
client = MCPClientWrapper()
def gradio_interface():
with gr.Blocks(title="TAAIC Tool Validation") as demo:
gr.Markdown("# TAAIC Tool Validation")
gr.Markdown("Connect your Gradio MCP Tool for validation for the TAAIC challenge.")
# API Key input section
with gr.Row(equal_height=True):
with gr.Column(scale=4):
api_key_input = gr.Textbox(
label="Anthropic API Key",
placeholder="Enter your Anthropic API key (sk-ant-...)",
type="password"
)
with gr.Column(scale=1):
api_key_btn = gr.Button("Set API Key")
api_key_status = gr.Textbox(label="API Key Status", interactive=False)
# MCP Server connection section
with gr.Row(equal_height=True):
with gr.Column(scale=4):
server_input = gr.Textbox(
label="MCP Server URL or Script Path",
placeholder="Enter URL (e.g., https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse) or local script path (e.g., weather.py)",
value="https://cyrilzakka-clinical-trials.hf.space/gradio_api/mcp/sse"
)
with gr.Column(scale=1):
connect_btn = gr.Button("Connect")
status = gr.Textbox(label="Connection Status", interactive=False)
# Dataset loading section
with gr.Row(equal_height=True):
with gr.Column(scale=3):
dataset_status = gr.Textbox(
label="Dataset Status",
value="Click 'Load Dataset' to load validation cases",
interactive=False
)
with gr.Column(scale=1):
dataset_btn = gr.Button("π₯ Load Dataset", interactive=True)
dataset_preview = gr.Textbox(
label="Dataset Preview",
visible=False,
interactive=False,
max_lines=10
)
# Validation results
validation_results = gr.Textbox(
label="Validation Results",
visible=False,
interactive=False,
max_lines=20
)
# Event handlers
api_key_btn.click(client.set_api_key, inputs=api_key_input, outputs=api_key_status)
connect_btn.click(client.connect, inputs=server_input, outputs=status)
dataset_btn.click(
client.load_dataset,
outputs=[dataset_status, dataset_btn, dataset_preview]
)
def run_validation():
results = client.validate_tools()
return gr.Textbox(value=results, visible=True)
dataset_btn.click(
lambda: client.validate_tools() if client.dataset else "Please load dataset first.",
outputs=validation_results,
show_progress=True
).then(
lambda: gr.Textbox(visible=True),
outputs=validation_results
)
# msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
# clear_btn.click(lambda: [], None, chatbot)
return demo
if __name__ == "__main__":
interface = gradio_interface()
interface.launch(debug=True) |