File size: 1,132 Bytes
3a298ab 3fe6fac 3a298ab fcc3d15 3fe6fac 78adffd aec538a 1c112cb 89fa28d fcc3d15 89fa28d fcc3d15 89fa28d fcc3d15 3a298ab 89fa28d 3a298ab 89fa28d 7de068a 01d1415 97624c8 3a298ab 89fa28d 39d8f72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import gradio as gr
import numpy as np
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
# Segformer ๋ชจ๋ธ ๋ฐ feature extractor ๋ถ๋ฌ์ค๊ธฐ
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
# ๋ชจ๋ธ ์์ธก ํจ์๋ฅผ ์ ์ํฉ๋๋ค.
def classify_image(img):
# ์ด๋ฏธ์ง๋ฅผ ์ ์ฒ๋ฆฌํฉ๋๋ค.
inputs = feature_extractor(images=img, return_tensors="tf")
# ๋ชจ๋ธ๋ก ์์ธก์ ์ํํฉ๋๋ค.
predictions = model(**inputs)
# ์์ธก ๊ฒฐ๊ณผ ์ค์์ ๊ฐ์ฅ ๋์ ํ๋ฅ ์ ๊ฐ์ง ํด๋์ค๋ฅผ ์ ํํฉ๋๋ค.
predicted_label = tf.argmax(predictions.logits[0], axis=-1).numpy()
# ๋ผ๋ฒจ์ ๋ฐํํฉ๋๋ค.
return predicted_label
# Gradio UI๋ฅผ ์์ฑํฉ๋๋ค.
iface = gr.Interface(fn=classify_image,
inputs="Image",
outputs="label", live=True)
# Gradio UI๋ฅผ ์์ํฉ๋๋ค.
iface.launch()
|