File size: 1,132 Bytes
3a298ab
 
 
3fe6fac
3a298ab
fcc3d15
3fe6fac
78adffd
aec538a
1c112cb
 
89fa28d
 
fcc3d15
 
 
89fa28d
fcc3d15
89fa28d
 
fcc3d15
3a298ab
89fa28d
 
3a298ab
89fa28d
7de068a
01d1415
97624c8
3a298ab
89fa28d
39d8f72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import gradio as gr
import numpy as np
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

# Segformer ๋ชจ๋ธ ๋ฐ feature extractor ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")

# ๋ชจ๋ธ ์˜ˆ์ธก ํ•จ์ˆ˜๋ฅผ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
def classify_image(img):
    # ์ด๋ฏธ์ง€๋ฅผ ์ „์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
    inputs = feature_extractor(images=img, return_tensors="tf")
    
    # ๋ชจ๋ธ๋กœ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
    predictions = model(**inputs)
    
    # ์˜ˆ์ธก ๊ฒฐ๊ณผ ์ค‘์—์„œ ๊ฐ€์žฅ ๋†’์€ ํ™•๋ฅ ์„ ๊ฐ€์ง„ ํด๋ž˜์Šค๋ฅผ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
    predicted_label = tf.argmax(predictions.logits[0], axis=-1).numpy()

    # ๋ผ๋ฒจ์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
    return predicted_label

# Gradio UI๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค.
iface = gr.Interface(fn=classify_image,
                     inputs="Image",
                     outputs="label", live=True)

# Gradio UI๋ฅผ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค.
iface.launch()