Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Define the prediction function
|
7 |
def generate_caption(image):
|
8 |
# Process the image
|
9 |
image = Image.fromarray(image)
|
10 |
-
|
11 |
-
inputs = processor(images=image, return_tensors="pt")#.to(device)
|
12 |
-
pixel_values = inputs.pixel_values
|
13 |
|
14 |
# Generate caption
|
15 |
-
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
16 |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
17 |
|
18 |
return generated_caption
|
@@ -20,7 +26,7 @@ def generate_caption(image):
|
|
20 |
# Define the Gradio interface
|
21 |
interface = gr.Interface(
|
22 |
fn=generate_caption,
|
23 |
-
inputs=gr.Image(),
|
24 |
outputs=gr.Textbox(),
|
25 |
live=True
|
26 |
)
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import BlipForConditionalGeneration, AutoProcessor
|
5 |
+
|
6 |
+
# Load processor and model from Hugging Face Hub
|
7 |
+
processor = AutoProcessor.from_pretrained("daliavanilla/BLIP-Radiology-model")
|
8 |
+
model = BlipForConditionalGeneration.from_pretrained("daliavanilla/BLIP-Radiology-model")
|
9 |
+
|
10 |
+
# Use GPU if available
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
|
14 |
# Define the prediction function
|
15 |
def generate_caption(image):
|
16 |
# Process the image
|
17 |
image = Image.fromarray(image)
|
18 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
|
|
19 |
|
20 |
# Generate caption
|
21 |
+
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
|
22 |
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
23 |
|
24 |
return generated_caption
|
|
|
26 |
# Define the Gradio interface
|
27 |
interface = gr.Interface(
|
28 |
fn=generate_caption,
|
29 |
+
inputs=gr.Image(type="numpy"), # Ensure the image type is correctly handled by PIL
|
30 |
outputs=gr.Textbox(),
|
31 |
live=True
|
32 |
)
|