File size: 9,645 Bytes
7fe98ab
59a4c9f
d61a0bc
d8bb216
6c12bfc
 
925790f
6c12bfc
d8bb216
 
59a4c9f
 
f59198d
 
59a4c9f
 
 
f59198d
59a4c9f
f59198d
59a4c9f
f59198d
59a4c9f
f59198d
59a4c9f
f59198d
59a4c9f
 
 
 
f59198d
 
59a4c9f
f59198d
 
59a4c9f
 
 
 
 
 
 
f59198d
 
59a4c9f
f59198d
 
59a4c9f
4d68dfd
59a4c9f
4d68dfd
59a4c9f
4d68dfd
925790f
 
 
 
 
626b672
59a4c9f
 
 
 
 
 
 
 
 
 
 
 
f59198d
d8bb216
 
 
6c12bfc
925790f
 
 
3d79b08
 
4d68dfd
d8bb216
 
 
925790f
59a4c9f
 
6c12bfc
d8bb216
 
626b672
d8bb216
59a4c9f
925790f
d8bb216
 
 
626b672
d8bb216
59a4c9f
925790f
626b672
59a4c9f
 
626b672
cbdec18
 
59a4c9f
cbdec18
 
 
59a4c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbdec18
59a4c9f
 
 
 
cbdec18
626b672
 
59a4c9f
d8bb216
 
 
59a4c9f
 
 
 
 
 
6c12bfc
925790f
59a4c9f
 
6c12bfc
d8bb216
59a4c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826eb28
7fe98ab
59a4c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925790f
 
 
59a4c9f
 
 
 
 
 
 
 
 
 
 
 
 
925790f
59a4c9f
 
 
 
925790f
 
59a4c9f
 
d8bb216
 
59a4c9f
 
d8bb216
59a4c9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch

import numpy as np
import random
import os
import yaml
import argparse
from pathlib import Path
import imageio
import tempfile
if latent_upsampler_instance: 
    latent_upsampler_instance.to(target_inference_device)


# --- Helper function for dimension calculation ---
MIN_DIM_SLIDER = 256
TARGET_FIXED_SIDE = 768

def calculate_new_dimensions(orig_w, orig_h):
    """
    both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
    """
    if orig_w == 0 or orig_h == 0:

        return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)

    if orig_w >= orig_h:
        new_h = TARGET_FIXED_SIDE
        aspect_ratio = orig_w / orig_h
        new_w_ideal = new_h * aspect_ratio


        new_w = round(new_w_ideal / 32) * 32


        new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))

        new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) 
    else:
        new_w = TARGET_FIXED_SIDE
        aspect_ratio = orig_h / orig_w
        new_h_ideal = new_w * aspect_ratio


        new_h = round(new_h_ideal / 32) * 32


        new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))

        new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))

    return int(new_h), int(new_w)

def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted", 
             input_image_filepath=None, input_video_filepath=None,
             height_ui=512, width_ui=704, mode="text-to-video",
             duration_ui=2.0, ui_frames_to_use=9,
             seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True):














    if randomize_seed:
        seed_ui = random.randint(0, 2**32 - 1)
    seed_everething(int(seed_ui))
    
    if ui_guidance_scale is None:
        ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0)
    
    target_frames_ideal = duration_ui * FPS
    target_frames_rounded = round(target_frames_ideal)
    if target_frames_rounded < 1: 

    height_padded = ((actual_height - 1) // 32 + 1) * 32
    width_padded = ((actual_width - 1) // 32 + 1) * 32
    num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1


    
    padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)

            call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
        except Exception as e:
            print(f"Error loading image {input_image_filepath}: {e}")
            raise RuntimeError(f"Could not load image: {e}")
    elif mode == "video-to-video" and input_video_filepath:
        try:
            call_kwargs["media_items"] = load_media_file(
            ).to(target_inference_device)
        except Exception as e:
            print(f"Error loading video {input_video_filepath}: {e}")
            raise RuntimeError(f"Could not load video: {e}")

    print(f"Moving models to {target_inference_device} for inference (if not already there)...")
    
    result_images_tensor = None
    if improve_texture_flag:
        if not active_latent_upsampler:
            raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
        
        multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
        
        first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
        first_pass_args["guidance_scale"] = float(ui_guidance_scale)

        first_pass_args.pop("num_inference_steps", None)


        second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
        second_pass_args["guidance_scale"] = float(ui_guidance_scale)

        second_pass_args.pop("num_inference_steps", None)
        
        multi_scale_call_kwargs = call_kwargs.copy()
        first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})

        single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
        single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
        single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
        single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
        single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
        

        single_pass_call_kwargs.pop("num_inference_steps", None) 
        single_pass_call_kwargs.pop("first_pass", None) 
        single_pass_call_kwargs.pop("second_pass", None)
        result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images

    if result_images_tensor is None:
        raise RuntimeError("Generation failed.")

    pad_left, pad_right, pad_top, pad_bottom = padding_values
    slice_h_end = -pad_bottom if pad_bottom > 0 else None
    ]

    video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()

    video_np = np.clip(video_np, 0, 1) 
    video_np = (video_np * 255).astype(np.uint8)

    timestamp = random.randint(10000, 99999)
    output_video_path = f"output_{timestamp}.mp4"

    
    try:
        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
            for frame_idx in range(video_np.shape[0]):

                video_writer.append_data(video_np[frame_idx])
                if frame_idx % 10 == 0:
                    print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}")
    except Exception as e:
        print(f"Error saving video with macro_block_size=1: {e}")
        try:
            with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
                for frame_idx in range(video_np.shape[0]):

                    video_writer.append_data(video_np[frame_idx])
                    if frame_idx % 10 == 0:
                        print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)")
        except Exception as e2:
            print(f"Fallback video saving error: {e2}")
            raise RuntimeError(f"Failed to save video: {e2}")
            
    return output_video_path, seed_ui

def main():
    parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line")
    parser.add_argument("--prompt", required=True, help="Text prompt for video generation")
    parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", 
                        help="Negative prompt")
    parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], 
                        default="text-to-video", help="Generation mode")
    parser.add_argument("--input-image", help="Input image path for image-to-video mode")
    parser.add_argument("--input-video", help="Input video path for video-to-video mode")
    parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)")
    parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)")
    parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)")
    parser.add_argument("--seed", type=int, default=42, help="Random seed")
    parser.add_argument("--randomize-seed", action="store_true", help="Use random seed")
    parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation")
    parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)")
    parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)")



    
    args = parser.parse_args()
































































































    
    # Validate parameters
    if args.mode == "image-to-video" and not args.input_image:
        print("Error: --input-image is required for image-to-video mode")
        return















    
    if args.mode == "video-to-video" and not args.input_video:
        print("Error: --input-video is required for video-to-video mode")
        return

    
    # Ensure dimensions are divisible by 32
    args.height = ((args.height - 1) // 32 + 1) * 32
    args.width = ((args.width - 1) // 32 + 1) * 32
    
    print(f"Starting video generation...")
    print(f"Prompt: {args.prompt}")
    print(f"Mode: {args.mode}")
    print(f"Duration: {args.duration}s")
    print(f"Resolution: {args.width}x{args.height}")
    
    try:
        output_path, used_seed = generate(
            prompt=args.prompt,
            negative_prompt=args.negative_prompt,
            input_image_filepath=args.input_image,
            input_video_filepath=args.input_video,
            height_ui=args.height,
            width_ui=args.width,
            mode=args.mode,
            duration_ui=args.duration,
            ui_frames_to_use=args.frames_to_use,
            seed_ui=args.seed,
            randomize_seed=args.randomize_seed,
            ui_guidance_scale=args.guidance_scale,
            improve_texture_flag=not args.no_improve_texture
        )
        
        print(f"\nVideo generation completed!")
        print(f"Output saved to: {output_path}")
        print(f"Used seed: {used_seed}")
        
    except Exception as e:
        print(f"Error during generation: {e}")
        raise

if __name__ == "__main__":
    if os.path.exists(models_dir) and os.path.isdir(models_dir):
        print(f"Model directory: {Path(models_dir).resolve()}")
    
    main()