Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import random | |
import os | |
import yaml | |
import argparse | |
from pathlib import Path | |
import imageio | |
import tempfile | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import shutil | |
from inference import ( | |
create_ltx_video_pipeline, | |
create_latent_upsampler, | |
load_image_to_tensor_with_resize_and_crop, | |
seed_everething, | |
get_device, | |
calculate_padding, | |
load_media_file | |
) | |
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline | |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml" | |
with open(config_file_path, "r") as file: | |
PIPELINE_CONFIG_YAML = yaml.safe_load(file) | |
LTX_REPO = "Lightricks/LTX-Video" | |
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280) | |
MAX_NUM_FRAMES = 257 | |
FPS = 30.0 | |
# --- Global variables for loaded models --- | |
pipeline_instance = None | |
latent_upsampler_instance = None | |
models_dir = "downloaded_models_gradio_cpu_init" | |
Path(models_dir).mkdir(parents=True, exist_ok=True) | |
# 创建输出目录 | |
output_dir = "output" | |
Path(output_dir).mkdir(parents=True, exist_ok=True) | |
print("Downloading models (if not present)...") | |
distilled_model_actual_path = hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=PIPELINE_CONFIG_YAML["checkpoint_path"], | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path | |
print(f"Distilled model path: {distilled_model_actual_path}") | |
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] | |
spatial_upscaler_actual_path = hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=SPATIAL_UPSCALER_FILENAME, | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path | |
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}") | |
print("Creating LTX Video pipeline on CPU...") | |
pipeline_instance = create_ltx_video_pipeline( | |
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], | |
precision=PIPELINE_CONFIG_YAML["precision"], | |
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], | |
sampler=PIPELINE_CONFIG_YAML["sampler"], | |
device="cpu", | |
enhance_prompt=False, | |
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], | |
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"], | |
) | |
print("LTX Video pipeline created on CPU.") | |
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"): | |
print("Creating latent upsampler on CPU...") | |
latent_upsampler_instance = create_latent_upsampler( | |
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], | |
device="cpu" | |
) | |
print("Latent upsampler created on CPU.") | |
target_inference_device = "cuda" | |
print(f"Target inference device: {target_inference_device}") | |
pipeline_instance.to(target_inference_device) | |
if latent_upsampler_instance: | |
latent_upsampler_instance.to(target_inference_device) | |
# --- Helper function for dimension calculation --- | |
MIN_DIM_SLIDER = 256 | |
TARGET_FIXED_SIDE = 768 | |
def calculate_new_dimensions(orig_w, orig_h): | |
""" | |
Calculates new dimensions for height and width sliders based on original media dimensions. | |
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally, | |
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]. | |
""" | |
if orig_w == 0 or orig_h == 0: | |
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE) | |
if orig_w >= orig_h: | |
new_h = TARGET_FIXED_SIDE | |
aspect_ratio = orig_w / orig_h | |
new_w_ideal = new_h * aspect_ratio | |
new_w = round(new_w_ideal / 32) * 32 | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
else: | |
new_w = TARGET_FIXED_SIDE | |
aspect_ratio = orig_h / orig_w | |
new_h_ideal = new_w * aspect_ratio | |
new_h = round(new_h_ideal / 32) * 32 | |
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) | |
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE)) | |
return int(new_h), int(new_w) | |
def generate(prompt, negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted", | |
input_image_filepath=None, input_video_filepath=None, | |
height_ui=512, width_ui=704, mode="text-to-video", | |
duration_ui=2.0, ui_frames_to_use=9, | |
seed_ui=42, randomize_seed=True, ui_guidance_scale=None, improve_texture_flag=True): | |
if randomize_seed: | |
seed_ui = random.randint(0, 2**32 - 1) | |
seed_everething(int(seed_ui)) | |
if ui_guidance_scale is None: | |
ui_guidance_scale = PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0) | |
target_frames_ideal = duration_ui * FPS | |
target_frames_rounded = round(target_frames_ideal) | |
if target_frames_rounded < 1: | |
target_frames_rounded = 1 | |
n_val = round((float(target_frames_rounded) - 1.0) / 8.0) | |
actual_num_frames = int(n_val * 8 + 1) | |
actual_num_frames = max(9, actual_num_frames) | |
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames) | |
actual_height = int(height_ui) | |
actual_width = int(width_ui) | |
height_padded = ((actual_height - 1) // 32 + 1) * 32 | |
width_padded = ((actual_width - 1) // 32 + 1) * 32 | |
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 | |
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded) | |
call_kwargs = { | |
"prompt": prompt, | |
"negative_prompt": negative_prompt, | |
"height": height_padded, | |
"width": width_padded, | |
"num_frames": num_frames_padded, | |
"frame_rate": int(FPS), | |
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)), | |
"output_type": "pt", | |
"conditioning_items": None, | |
"media_items": None, | |
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"], | |
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"], | |
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"], | |
"image_cond_noise_scale": 0.15, | |
"is_video": True, | |
"vae_per_channel_normalize": True, | |
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"), | |
"offload_to_cpu": False, | |
"enhance_prompt": False, | |
} | |
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values") | |
if stg_mode_str.lower() in ["stg_av", "attention_values"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues | |
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip | |
elif stg_mode_str.lower() in ["stg_r", "residual"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual | |
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]: | |
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock | |
else: | |
raise ValueError(f"Invalid stg_mode: {stg_mode_str}") | |
if mode == "image-to-video" and input_image_filepath: | |
try: | |
media_tensor = load_image_to_tensor_with_resize_and_crop( | |
input_image_filepath, actual_height, actual_width | |
) | |
media_tensor = torch.nn.functional.pad(media_tensor, padding_values) | |
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)] | |
except Exception as e: | |
print(f"Error loading image {input_image_filepath}: {e}") | |
raise RuntimeError(f"Could not load image: {e}") | |
elif mode == "video-to-video" and input_video_filepath: | |
try: | |
call_kwargs["media_items"] = load_media_file( | |
media_path=input_video_filepath, | |
height=actual_height, | |
width=actual_width, | |
max_frames=int(ui_frames_to_use), | |
padding=padding_values | |
).to(target_inference_device) | |
except Exception as e: | |
print(f"Error loading video {input_video_filepath}: {e}") | |
raise RuntimeError(f"Could not load video: {e}") | |
print(f"Moving models to {target_inference_device} for inference (if not already there)...") | |
active_latent_upsampler = None | |
if improve_texture_flag and latent_upsampler_instance: | |
active_latent_upsampler = latent_upsampler_instance | |
result_images_tensor = None | |
if improve_texture_flag: | |
if not active_latent_upsampler: | |
raise RuntimeError("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.") | |
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler) | |
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() | |
first_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
first_pass_args.pop("num_inference_steps", None) | |
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy() | |
second_pass_args["guidance_scale"] = float(ui_guidance_scale) | |
second_pass_args.pop("num_inference_steps", None) | |
multi_scale_call_kwargs = call_kwargs.copy() | |
multi_scale_call_kwargs.update({ | |
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"], | |
"first_pass": first_pass_args, | |
"second_pass": second_pass_args, | |
}) | |
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") | |
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images | |
else: | |
single_pass_call_kwargs = call_kwargs.copy() | |
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {}) | |
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps") | |
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) | |
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale") | |
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale") | |
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list") | |
single_pass_call_kwargs.pop("num_inference_steps", None) | |
single_pass_call_kwargs.pop("first_pass", None) | |
single_pass_call_kwargs.pop("second_pass", None) | |
single_pass_call_kwargs.pop("downscale_factor", None) | |
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}") | |
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images | |
if result_images_tensor is None: | |
raise RuntimeError("Generation failed.") | |
pad_left, pad_right, pad_top, pad_bottom = padding_values | |
slice_h_end = -pad_bottom if pad_bottom > 0 else None | |
slice_w_end = -pad_right if pad_right > 0 else None | |
result_images_tensor = result_images_tensor[ | |
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end | |
] | |
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = np.clip(video_np, 0, 1) | |
video_np = (video_np * 255).astype(np.uint8) | |
# 生成带时间戳的文件名并保存到output目录 | |
timestamp = random.randint(10000, 99999) | |
output_video_path = os.path.join(output_dir, f"output_{timestamp}.mp4") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
video_writer.append_data(video_np[frame_idx]) | |
if frame_idx % 10 == 0: | |
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]}") | |
except Exception as e: | |
print(f"Error saving video with macro_block_size=1: {e}") | |
try: | |
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer: | |
for frame_idx in range(video_np.shape[0]): | |
video_writer.append_data(video_np[frame_idx]) | |
if frame_idx % 10 == 0: | |
print(f"Saving frame {frame_idx + 1}/{video_np.shape[0]} (fallback)") | |
except Exception as e2: | |
print(f"Fallback video saving error: {e2}") | |
raise RuntimeError(f"Failed to save video: {e2}") | |
print(f"Video saved successfully to: {output_video_path}") | |
return output_video_path, seed_ui | |
def main(): | |
parser = argparse.ArgumentParser(description="LTX Video Generation from Command Line") | |
parser.add_argument("--prompt", required=True, help="Text prompt for video generation") | |
parser.add_argument("--negative-prompt", default="worst quality, inconsistent motion, blurry, jittery, distorted", | |
help="Negative prompt") | |
parser.add_argument("--mode", choices=["text-to-video", "image-to-video", "video-to-video"], | |
default="text-to-video", help="Generation mode") | |
parser.add_argument("--input-image", help="Input image path for image-to-video mode") | |
parser.add_argument("--input-video", help="Input video path for video-to-video mode") | |
parser.add_argument("--duration", type=float, default=2.0, help="Video duration in seconds (0.3-8.5)") | |
parser.add_argument("--height", type=int, default=512, help="Video height (must be divisible by 32)") | |
parser.add_argument("--width", type=int, default=704, help="Video width (must be divisible by 32)") | |
parser.add_argument("--seed", type=int, default=42, help="Random seed") | |
parser.add_argument("--randomize-seed", action="store_true", help="Use random seed") | |
parser.add_argument("--guidance-scale", type=float, help="Guidance scale for generation") | |
parser.add_argument("--no-improve-texture", action="store_true", help="Disable texture improvement (faster)") | |
parser.add_argument("--frames-to-use", type=int, default=9, help="Frames to use from input video (for video-to-video)") | |
args = parser.parse_args() | |
# Validate parameters | |
if args.mode == "image-to-video" and not args.input_image: | |
print("Error: --input-image is required for image-to-video mode") | |
return | |
if args.mode == "video-to-video" and not args.input_video: | |
print("Error: --input-video is required for video-to-video mode") | |
return | |
# Ensure dimensions are divisible by 32 | |
args.height = ((args.height - 1) // 32 + 1) * 32 | |
args.width = ((args.width - 1) // 32 + 1) * 32 | |
print(f"Starting video generation...") | |
print(f"Prompt: {args.prompt}") | |
print(f"Mode: {args.mode}") | |
print(f"Duration: {args.duration}s") | |
print(f"Resolution: {args.width}x{args.height}") | |
print(f"Output directory: {os.path.abspath(output_dir)}") | |
try: | |
output_path, used_seed = generate( | |
prompt=args.prompt, | |
negative_prompt=args.negative_prompt, | |
input_image_filepath=args.input_image, | |
input_video_filepath=args.input_video, | |
height_ui=args.height, | |
width_ui=args.width, | |
mode=args.mode, | |
duration_ui=args.duration, | |
ui_frames_to_use=args.frames_to_use, | |
seed_ui=args.seed, | |
randomize_seed=args.randomize_seed, | |
ui_guidance_scale=args.guidance_scale, | |
improve_texture_flag=not args.no_improve_texture | |
) | |
print(f"\n✅ Video generation completed!") | |
print(f"📁 Output saved to: {output_path}") | |
print(f"🎲 Used seed: {used_seed}") | |
print(f"📂 Full path: {os.path.abspath(output_path)}") | |
except Exception as e: | |
print(f"❌ Error during generation: {e}") | |
raise | |
if __name__ == "__main__": | |
if os.path.exists(models_dir) and os.path.isdir(models_dir): | |
print(f"Model directory: {Path(models_dir).resolve()}") | |
print(f"Output directory: {Path(output_dir).resolve()}") | |
main() | |