danhtran2mind's picture
Update app.py
5c27299 verified
raw
history blame
16.9 kB
import gradio as gr
from cv_functions.functions import (
image_video_io, color_space_conversion, resize_crop, geometric_transform,
thresholding, edge_detection, image_filtering, contour_detection,
feature_detection, object_detection, face_detection, image_segmentation,
optical_flow, camera_calibration, stereo_vision, background_subtraction,
image_stitching, kmeans_clustering, deep_learning, drawing_text
)
# Custom CSS with Tailwind
custom_css = """
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/tailwind.min.css" rel="stylesheet">
<style>
body { @apply bg-gray-100 font-sans; }
.gradio-container { @apply max-w-7xl mx-auto p-4; }
.tab-button { @apply px-4 py-2 text-sm font-medium text-gray-700 bg-white rounded-t-lg border-b-2 border-transparent hover:border-blue-500 focus:outline-none focus:border-blue-500; }
.tab-button-active { @apply border-blue-500 text-blue-600; }
.tab-content { @apply bg-white p-6 rounded-b-lg shadow-lg; }
.gallery img { @apply rounded-lg shadow-md; }
.btn-primary { @apply bg-blue-500 text-white px-4 py-2 rounded-lg hover:bg-blue-600 transition; }
h1 { @apply text-3xl font-bold text-gray-800 mb-4; }
.input-label { @apply text-sm font-medium text-gray-600 mb-2; }
.markdown-style { @apply text-center text-gray-600 mb-4; }
</style>
"""
# Gradio interface
with gr.Blocks(css=custom_css) as demo:
gr.HTML("<h1 class='text-center'>OpenCV Comprehensive Demo</h1>")
gr.Markdown("Explore all OpenCV features by uploading images or videos and selecting a tab below.", elem_classes=["markdown-style"])
with gr.Tabs():
# 1. Image and Video I/O
with gr.TabItem("Image/Video I/O", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Upload an image or video to display.", elem_classes=["input-label"])
io_image = gr.Image(label="Upload Image", type="pil")
io_video = gr.Video(label="Upload Video")
io_button = gr.Button("Display", elem_classes="btn-primary")
with gr.Column():
io_output = gr.Gallery(label="Output")
io_button.click(fn=image_video_io, inputs=[io_image, io_video], outputs=io_output)
# 2. Color Space Conversion
with gr.TabItem("Color Space Conversion", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Convert between RGB, HSV, and LAB color spaces.", elem_classes=["input-label"])
cs_image = gr.Image(label="Upload Image", type="pil")
cs_space = gr.Dropdown(choices=["RGB", "HSV", "LAB"], label="Color Space", value="RGB")
cs_button = gr.Button("Apply Conversion", elem_classes="btn-primary")
with gr.Column():
cs_output = gr.Image(label="Converted Image")
cs_button.click(fn=color_space_conversion, inputs=[cs_image, cs_space], outputs=cs_output)
# 3. Image Resizing and Cropping
with gr.TabItem("Resizing and Cropping", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Resize or crop the image.", elem_classes=["input-label"])
rc_image = gr.Image(label="Upload Image", type="pil")
rc_scale = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Scale Factor")
rc_crop_x = gr.Slider(0, 1, value=0, step=0.1, label="Crop X (relative)")
rc_crop_y = gr.Slider(0, 1, value=0, step=0.1, label="Crop Y (relative)")
rc_crop_w = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Width (relative)")
rc_crop_h = gr.Slider(0, 1, value=0.5, step=0.1, label="Crop Height (relative)")
rc_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
rc_output = gr.Gallery(label="Resized and Cropped Images")
rc_button.click(fn=resize_crop, inputs=[rc_image, rc_scale, rc_crop_x, rc_crop_y, rc_crop_w, rc_crop_h], outputs=rc_output)
# 4. Geometric Transformations
with gr.TabItem("Geometric Transformations", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply rotation and translation.", elem_classes=["input-label"])
gt_image = gr.Image(label="Upload Image", type="pil")
gt_angle = gr.Slider(-180, 180, value=0, step=1, label="Rotation Angle (degrees)")
gt_tx = gr.Slider(-100, 100, value=0, step=1, label="Translation X (pixels)")
gt_ty = gr.Slider(-100, 100, value=0, step=1, label="Translation Y (pixels)")
gt_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
gt_output = gr.Image(label="Transformed Image")
gt_button.click(fn=geometric_transform, inputs=[gt_image, gt_angle, gt_tx, gt_ty], outputs=gt_output)
# 5. Image Thresholding
with gr.TabItem("Thresholding", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply global or adaptive thresholding.", elem_classes=["input-label"])
thresh_image = gr.Image(label="Upload Image", type="pil")
thresh_type = gr.Dropdown(choices=["Global", "Adaptive"], label="Threshold Type", value="Global")
thresh_value = gr.Slider(0, 255, value=127, step=1, label="Threshold Value")
thresh_block = gr.Slider(3, 21, value=11, step=2, label="Block Size (Adaptive)")
thresh_C = gr.Slider(-10, 10, value=2, step=1, label="Constant (Adaptive)")
thresh_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
thresh_output = gr.Image(label="Thresholded Image")
thresh_button.click(fn=thresholding, inputs=[thresh_image, thresh_type, thresh_value, thresh_block, thresh_C], outputs=thresh_output)
# 6. Edge Detection
with gr.TabItem("Edge Detection", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect edges using Canny, Sobel, or Laplacian.", elem_classes=["input-label"])
edge_image = gr.Image(label="Upload Image", type="pil")
edge_type = gr.Dropdown(choices=["Canny", "Sobel", "Laplacian"], label="Edge Type", value="Canny")
edge_t1 = gr.Slider(0, 500, value=100, step=10, label="Canny Threshold 1")
edge_t2 = gr.Slider(0, 500, value=200, step=10, label="Canny Threshold 2")
edge_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
edge_output = gr.Image(label="Edges")
edge_button.click(fn=edge_detection, inputs=[edge_image, edge_type, edge_t1, edge_t2], outputs=edge_output)
# 7. Image Filtering
with gr.TabItem("Image Filtering", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply Gaussian or median blur.", elem_classes=["input-label"])
filter_image = gr.Image(label="Upload Image", type="pil")
filter_type = gr.Dropdown(choices=["Gaussian", "Median"], label="Filter Type", value="Gaussian")
filter_kernel = gr.Slider(3, 21, value=5, step=2, label="Kernel Size")
filter_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
filter_output = gr.Image(label="Filtered Image")
filter_button.click(fn=image_filtering, inputs=[filter_image, filter_type, filter_kernel], outputs=filter_output)
# 8. Contour Detection
with gr.TabItem("Contour Detection", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect and draw contours.", elem_classes=["input-label"])
contour_image = gr.Image(label="Upload Image", type="pil")
contour_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
contour_output = gr.Image(label="Contours")
contour_button.click(fn=contour_detection, inputs=contour_image, outputs=contour_output)
# 9. Feature Detection
with gr.TabItem("Feature Detection", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect ORB keypoints.", elem_classes=["input-label"])
feat_image = gr.Image(label="Upload Image", type="pil")
feat_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
feat_output = gr.Image(label="Keypoints")
feat_button.click(fn=feature_detection, inputs=feat_image, outputs=feat_output)
# 10. Object Detection
with gr.TabItem("Object Detection", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect cars using Haar Cascade.", elem_classes=["input-label"])
obj_image = gr.Image(label="Upload Image", type="pil")
obj_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
obj_output = gr.Image(label="Detected Objects")
obj_button.click(fn=object_detection, inputs=obj_image, outputs=obj_output)
# 11. Face Detection
with gr.TabItem("Face Detection", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect faces using Haar Cascade.", elem_classes=["input-label"])
face_image = gr.Image(label="Upload Image", type="pil")
face_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
face_output = gr.Image(label="Detected Faces")
face_button.click(fn=face_detection, inputs=face_image, outputs=face_output)
# 12. Image Segmentation
with gr.TabItem("Image Segmentation", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply GrabCut segmentation.", elem_classes=["input-label"])
seg_image = gr.Image(label="Upload Image", type="pil")
seg_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
seg_output = gr.Image(label="Segmented Image")
seg_button.click(fn=image_segmentation, inputs=seg_image, outputs=seg_output)
# 13. Motion Analysis
with gr.TabItem("Motion Analysis", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Compute optical flow for video.", elem_classes=["input-label"])
motion_video = gr.Video(label="Upload Video")
motion_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
motion_output = gr.Image(label="Optical Flow")
motion_button.click(fn=optical_flow, inputs=motion_video, outputs=motion_output)
# 14. Camera Calibration
with gr.TabItem("Camera Calibration", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect checkerboard for calibration (upload checkerboard image).", elem_classes=["input-label"])
calib_image = gr.Image(label="Upload Image", type="pil")
calib_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
calib_output = gr.Image(label="Calibration Result")
calib_button.click(fn=camera_calibration, inputs=calib_image, outputs=calib_output)
# 15. Stereo Vision
with gr.TabItem("Stereo Vision", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Compute disparity map (simplified).", elem_classes=["input-label"])
stereo_image = gr.Image(label="Upload Image", type="pil")
stereo_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
stereo_output = gr.Image(label="Disparity Map")
stereo_button.click(fn=stereo_vision, inputs=stereo_image, outputs=stereo_output)
# 16. Background Subtraction
with gr.TabItem("Background Subtraction", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply MOG2 for moving object detection.", elem_classes=["input-label"])
bg_video = gr.Video(label="Upload Video")
bg_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
bg_output = gr.Image(label="Foreground Mask")
bg_button.click(fn=background_subtraction, inputs=bg_video, outputs=bg_output)
# 17. Image Stitching
with gr.TabItem("Image Stitching", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Stitch two images using ORB features.", elem_classes=["input-label"])
stitch_image1 = gr.Image(label="Upload First Image", type="pil")
stitch_image2 = gr.Image(label="Upload Second Image", type="pil")
stitch_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
stitch_output = gr.Image(label="Stitched Image")
stitch_button.click(fn=image_stitching, inputs=[stitch_image1, stitch_image2], outputs=stitch_output)
# 18. Machine Learning (K-Means)
with gr.TabItem("K-Means Clustering", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Apply k-means clustering for color quantization.", elem_classes=["input-label"])
kmeans_image = gr.Image(label="Upload Image", type="pil")
kmeans_k = gr.Slider(2, 16, value=8, step=1, label="Number of Clusters (K)")
kmeans_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
kmeans_output = gr.Image(label="Clustered Image")
kmeans_button.click(fn=kmeans_clustering, inputs=[kmeans_image, kmeans_k], outputs=kmeans_output)
# 19. Deep Learning
with gr.TabItem("Deep Learning", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Detect objects using MobileNet SSD (upload prototxt and caffemodel files).", elem_classes=["input-label"])
dl_image = gr.Image(label="Upload Image", type="pil")
dl_prototxt = gr.File(label="Upload Prototxt File")
dl_model = gr.File(label="Upload Caffemodel File")
dl_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
dl_output = gr.Image(label="Detected Objects")
dl_button.click(fn=deep_learning, inputs=[dl_image, dl_prototxt, dl_model], outputs=dl_output)
# 20. Drawing and Text
with gr.TabItem("Drawing and Text", elem_classes="tab-button"):
with gr.Row():
with gr.Column():
gr.Markdown("Draw shapes and add text to the image.", elem_classes=["input-label"])
draw_image = gr.Image(label="Upload Image", type="pil")
draw_shape = gr.Dropdown(choices=["Rectangle", "Circle"], label="Shape", value="Rectangle")
draw_text = gr.Textbox(label="Text to Add", value="OpenCV")
draw_button = gr.Button("Apply", elem_classes="btn-primary")
with gr.Column():
draw_output = gr.Image(label="Annotated Image")
draw_button.click(fn=drawing_text, inputs=[draw_image, draw_shape, draw_text], outputs=draw_output)
if __name__ == "__main__":
demo.launch()