RNN-NS / app.py
danielle2003's picture
Update app.py
0724716 verified
import streamlit as st
import streamlit.components.v1 as components
import yfinance as yf
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import time
import os
import torch.nn as nn
import torch
# --- Page Configuration ---
st.set_page_config(layout="wide")
# --- Streamlit Session State Initialization ---
if 'run_button_clicked' not in st.session_state:
st.session_state.run_button_clicked = False
if 'loading' not in st.session_state:
st.session_state.loading = False
if 'data' not in st.session_state:
st.session_state.data = None
if 'predictions' not in st.session_state:
st.session_state.predictions = None
if 'error' not in st.session_state:
st.session_state.error = None
if 'last_ticker' not in st.session_state:
st.session_state['last_ticker'] = 'AMZN'
# --- Custom CSS ---
st.markdown("""
<style>
/* Hide Streamlit's default header, footer, and hamburger menu */
#MainMenu, header, footer { visibility: hidden; }
/* Remove padding from the main block container for a full-width feel */
.block-container {
padding: 0 !important;
}
div.stButton > button {
background: rgba(255, 255, 255, 0.2);
color: orange !important; /* White text */
font-family: "Times New Roman " !important; /* Font */
font-size: 18px !important; /* Font size */
font-weight: bold !important; /* Bold text */
padding: 10px 20px; /* Padding for buttons */
border: none; /* Remove border */
border-radius: 35px; /* Rounded corners */
box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
transition: all 0.3s ease-in-out; /* Smooth transition */
display: flex;
align-items: center;
justify-content: center;
margin: 10px 0;
width:190px;
height:50px;
margin-top:5px;
}
div[data-testid="stSelectbox"]
{
background-color: white !important;
position: relative;
border-bottom:1px solid #ccc;
border-radius:0px;
}
div[data-testid="stTextInput"]{
}
div[data-testid="stTextInput"] > div >div {
background-color: rgba(255, 158, 87, 0.12) !important;
}
div[data-testid="stTextInputRootElement"]{
border: 1px solid white !important;
}
/* Hover effect */
div.stButton > button:hover {
background: rgba(255, 255, 255, 0.2);
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
transform: scale(1.05); /* Slightly enlarge button */
transform: scale(1.1); /* Slight zoom on hover */
box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
}
/* Styling the sidebar to have a modern, dark look */
section[data-testid="stSidebar"] {
backdrop-filter: blur(10px);
background: rgba(255, 255, 255, 0.15);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.01);
height:100px;
[data-testid="stSidebar"] h2 {
color: #FFFFFF; /* White headers in the sidebar */
font-family:time new roman !important;
}
[data-testid="stSidebar"] .st-emotion-cache-1629p8f a {
color: #94A3B8; /* Lighter text color for links */
font-family:time new roman !important;
}
[data-testid="stImageContainer"]>img{
max-width:70% !important;
margin-top:-70px;
}
div[data-testid="stMarkdownContainer"] >p{
font-family:time new roman !important;
}
</style>
""", unsafe_allow_html=True)
# --- Python Backend Functions ---
# Outside of any function
class GRUModel(nn.Module):
def __init__(self, input_dim=1, hidden_dim=100, num_layers=2, output_dim=1, dropout_prob=0.2):
super(GRUModel, self).__init__()
self.gru = nn.GRU(input_dim, hidden_dim, num_layers, batch_first=True, dropout=dropout_prob)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, x):
h0 = torch.zeros(2, x.size(0), 100).to(x.device)
out, _ = self.gru(x, h0)
return self.fc(out[:, -1, :])
class BiLSTMModel(nn.Module):
def __init__(self):
super(BiLSTMModel, self).__init__()
self.lstm = nn.LSTM(input_size=1, hidden_size=100, num_layers=1, batch_first=True, dropout=0.2, bidirectional=True)
self.fc = nn.Linear(200, 1)
def forward(self, x):
h0 = torch.zeros(2, x.size(0), 100)
c0 = torch.zeros(2, x.size(0), 100)
out, _ = self.lstm(x, (h0, c0))
return self.fc(out[:, -1, :])
@st.cache_resource(ttl=3600)
def load_model_from_disk(path, model_type):
model = BiLSTMModel() if model_type == "Bi-Directional LSTM" else GRUModel()
state = torch.load(path, map_location=torch.device("cpu"))
model.load_state_dict(state['model_state_dict'] if 'model_state_dict' in state else state)
model.eval()
return model
@st.cache_resource(ttl=3600)
def load_scripted_model(path):
model = torch.jit.load(path, map_location=torch.device("cpu"))
model.eval()
return model
@st.cache_resource
def preload_models():
return {
"Bi-Directional LSTM": load_scripted_model("bilstm_scriptes.pt"),
"Gated Recurrent Unit": load_model_from_disk("best_gru_model.pth", model_type="GRU")
}
MODELS = preload_models()
@st.cache_data(ttl=900) # Cache data for 15 minutes
def get_stock_data(ticker):
"""Fetches historical stock data from Yahoo Finance for the last 4 years."""
end_date = datetime.now()
start_date = end_date - timedelta(days=4 * 365)
print(f"Fetching data for ticker: {ticker} from {start_date.date()} to {end_date.date()}")
data = yf.download(ticker, period="4y", multi_level_index=False)
data.to_csv("AMZN_data.csv")
if data.empty:
print(f"No data found for ticker: {ticker}")
return None
data.reset_index(inplace=True)
print(f"Successfully fetched {len(data)} rows for {ticker}")
return data
def predict_with_model(data, n_days, model_path, model_type, model=None)-> pd.DataFrame:
if model is None:
model = load_model_from_disk(model_path, model_type=model_type)
close_prices = data['Close'].values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_prices = scaler.fit_transform(close_prices)
sequence_length = 90
if len(scaled_prices) < sequence_length:
raise ValueError(f"Not enough historical data ({len(scaled_prices)} points) to create a sequence of {sequence_length} for prediction.")
last_sequence = scaled_prices[-sequence_length:]
current_seq = torch.tensor(last_sequence.reshape(1, sequence_length, 1), dtype=torch.float32)
predictions_scaled = []
with torch.no_grad():
for _ in range(n_days):
pred = model(current_seq)
predictions_scaled.append(pred.item())
next_input = pred.view(1, 1, 1)
current_seq = torch.cat((current_seq[:, 1:, :], next_input), dim=1)
predictions = scaler.inverse_transform(np.array(predictions_scaled).reshape(-1, 1)).flatten()
print("predictions",predictions)
last_date = pd.to_datetime(data['Date'].iloc[-1])
future_dates = [last_date + timedelta(days=i) for i in range(1, n_days + 1)]
prediction_df = pd.DataFrame({'Date': future_dates, 'Predicted Price': predictions})
historical_returns = data['Close'].pct_change().dropna()
volatility = historical_returns.std() if not historical_returns.empty else 0.01
error_std_growth = volatility * np.sqrt(np.arange(1, n_days + 1))
prediction_df['Upper CI'] = predictions * (1 + 1.96 * error_std_growth)
prediction_df['Lower CI'] = predictions * (1 - 1.96 * error_std_growth)
return prediction_df
# --- Streamlit Sidebar Controls ---
with st.sidebar:
st.image("logo2.png", use_container_width=True)
st.markdown("Dashboard Controls")
ticker = st.text_input("Stock Ticker", st.session_state.get('last_ticker', "AMZN"), disabled=True).upper()
model_type = st.selectbox(
"Prediction Model",
("Bi-Directional LSTM", "Gated Recurrent Unit"),
key="model_choice",
help="Select the neural network architecture for prediction."
)
prediction_days = st.slider("Prediction Horizon (Days)", 7, 21, st.session_state.get('last_prediction_days', 7))
if st.button("21 days ahead of the market", use_container_width=True, disabled=True):
st.session_state.run_button_clicked = True
st.session_state.loading = True
st.session_state.last_ticker = ticker
st.session_state.last_prediction_days = prediction_days
st.session_state.error = None
print("Generate Dashboard button clicked. Loading state set to True.")
st.rerun()
# Check if model or prediction days have changed
if (
ticker != st.session_state.get('last_ticker', '') or
model_type != st.session_state.get('last_model_type', '') or
prediction_days != st.session_state.get('last_prediction_days', 7)
):
st.session_state.run_button_clicked = True
st.session_state.loading = True
st.session_state.last_ticker = ticker
st.session_state.last_model_type = model_type
st.session_state.last_prediction_days = prediction_days
# --- Main Application Logic ---
if st.session_state.run_button_clicked:
model = MODELS[model_type]
print(f"Inside main logic block. Current loading state: {st.session_state.loading}")
try:
if os.path.exists("AMZN_data.csv"):
st.session_state.data = pd.read_csv("AMZN_data.csv")
else:
st.session_state.data = get_stock_data(ticker)
if st.session_state.data is None:
st.session_state.error = f"Could not fetch data for ticker '{ticker}'. It may be an invalid symbol or network issue."
else:
model_path = "best_bilstm_model.pth" if model_type == "Bi-Directional LSTM" else "best_gru_model.pth"
st.session_state.predictions = predict_with_model(
st.session_state.data, prediction_days, model_path=None, model_type=model_type, model=model
)
print("model",model)
print("data", st.session_state.data)
st.session_state.error = None
except FileNotFoundError as e:
st.session_state.error = str(e)
print(f"Caught FileNotFoundError: {e}")
except ValueError as e:
st.session_state.error = str(e)
print(f"Caught ValueError: {e}")
except Exception as e:
st.session_state.error = f"An unexpected error occurred: {str(e)}"
print(f"Caught general Exception: {e}")
st.session_state.loading = False
st.session_state.run_button_clicked = False
print(f"Processing complete. Loading state set to False. Error: {st.session_state.error}")
st.rerun()
# --- Data Preparation for Front-End ---
historical_data_json = 'null'
prediction_data_json = 'null'
is_loading_js = str(st.session_state.get('loading', False)).lower()
error_message_js = 'null'
if st.session_state.get('error'):
error_message_js = f"'{st.session_state.error}'" # Pass error to JS
if st.session_state.data is not None and st.session_state.get('error') is None:
historical_data_json = st.session_state.data.to_json(orient='split', date_format='iso')
prediction_data_json = st.session_state.predictions.to_json(orient='split', date_format='iso')
# --- HTML Front-End ---
html_code = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Stock Intelligence Dashboard</title>
<script src="https://cdn.tailwindcss.com"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chart.umd.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chartjs-adapter-date-fns.bundle.min.js"></script>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800&display=swap" rel="stylesheet">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css">
<style>
body {{ font-family: 'time new roman'; background-color: #f1f5f9;scrollbar-width: 2px !important; scrollbar-color: rgba(100, 100, 100, 0.4) transparent;}}
.metric-card, .info-card {{ background-color: #ffffff; border-radius: 1rem; box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1); transition: all 0.3s ease-in-out; border: 1px solid #e2e8f0; }}
.metric-card:hover {{ transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgb(0 0 0 / 0.1), 0 4px 6px -4px rgb(0 0 0 / 0.1); }}
.positive {{ color: #10B981; }}
.negative {{ color: #EF4444; }}
.neutral {{ color: #64748b; }}
::-webkit-scrollbar {{
width: 6px;
}}
::-webkit-scrollbar-thumb {{
background-color: rgba(100, 100, 100, 0.4);
border-radius: 3px;
}}
::-webkit-scrollbar-track {{
background: transparent;
}}
#predictionTable table {{ width: 100%; border-collapse: collapse; }}
#predictionTable th, #predictionTable td {{ padding: 0.75rem 1rem; text-align: left; border-bottom: 1px solid #e2e8f0; }}
#predictionTable th {{ background-color: #f8fafc; font-weight: 600; font-size: 0.75rem; text-transform: uppercase; letter-spacing: 0.05em; color: #64748b; }}
#loading-overlay {{ position: fixed; inset: 0; background-color: rgba(255, 255, 255, 0.8); z-index: 100; display: flex; align-items: center; justify-content: center; backdrop-filter: blur(4px); transition: opacity 0.3s ease; }}
.spinner {{ width: 56px; height: 56px; border: 5px solid #3b82f6; border-bottom-color: transparent; border-radius: 50%; display: inline-block; box-sizing: border-box; animation: spin 1s linear infinite; }}
@keyframes spin {{ 0% {{ transform: rotate(0deg); }} 100% {{ transform: rotate(360deg); }} }}
.hidden {{ display: none !important; }}
.error-message {{ color: #EF4444; font-weight: 600; text-align: center; margin-top: 20px; padding: 15px; background-color: #fee2e2; border-radius: 0.5rem; border: 1px solid #ef4444; }}
</style>
</head>
<body class="antialiased text-slate-800">
<main id="content-wrapper">
<header class="bg-white/80 backdrop-blur-lg sticky top-0 z-50 border-b border-slate-200">
<div class="max-w-8xl mx-auto px-4 sm:px-6 lg:px-8">
<div class="flex items-center justify-between h-16">
<div class="flex items-center">
<i class="fas fa-chart-line text-2xl text-orange-400"></i>
<h1 id="dashboard-title" class="text-xl font-bold text-slate-900 ml-3">{ticker} Intelligence Dashboard</h1>
</div>
<div class="text-sm text-slate-500 flex items-center">
<div id="status-message" class="text-center text-sm text-slate-500 mt-4 hidden">Loading updated data...</div>
<i class="fas fa-rocket mr-2 text-orange-400"></i> Powered by a <span class="font-semibold text-yellow-600 ml-1">{model_type}</span>&nbsp model
</div>
</div>
</div>
</header>
<div class="p-4 sm:p-6 lg:p-8">
<div class="max-w-8xl mx-auto">
<div id="dashboard-error-message" class="hidden error-message"></div>
<div class="grid grid-cols-1 sm:grid-cols-2 lg:grid-cols-4 gap-6 mb-8" id="metrics-grid"></div>
<div class="grid grid-cols-1 lg:grid-cols-3 gap-8">
<div class="lg:col-span-2 space-y-8">
<div class="info-card p-4 sm:p-6">
<canvas id="priceChart" style="height: 350px;"></canvas>
</div>
<div class="info-card p-4 sm:p-6">
<canvas id="volumeChart" style="height: 200px;"></canvas>
</div>
<div id="predictionDetailsContainer" class="info-card p-4 sm:p-6 hidden">
<h3 class="text-lg font-semibold mb-4 text-slate-800">AI Prediction Details</h3>
<div class="overflow-x-auto" id="predictionTable"></div>
</div>
</div>
<div class="lg:col-span-1 space-y-8">
<div class="info-card p-6">
<h3 class="text-lg font-semibold mb-4 text-slate-800 flex items-center"><i class="fas fa-robot mr-3 text-orange-400"></i> AI Prediction Summary</h3>
<div id="predictionResult" class="mt-4 text-center"></div>
</div>
<div class="info-card p-6">
<h3 class="text-lg font-semibold mb-4 text-slate-800">Technical Summary</h3>
<div class="space-y-3" id="tech-summary"></div>
</div>
</div>
</div>
</div>
</div>
</main>
<script>
document.addEventListener('DOMContentLoaded', function () {{
const {{
LineController,
LineElement,
PointElement,
LinearScale,
TimeScale,
Legend,
Tooltip,
BarController,
BarElement,
CategoryScale // Although you use TimeScale for X, CategoryScale might be needed for other internal reasons or for completeness for Bar charts
}} = Chart;
Chart.register(
LineController,
LineElement,
PointElement,
LinearScale,
TimeScale,
Legend,
Tooltip,
BarController,
BarElement,
CategoryScale
);
console.log("JS: Chart.js components registered.");
const historicalDataJson = {historical_data_json};
const predictionDataJson = {prediction_data_json};
const isLoading = {is_loading_js};
const errorMessage = {error_message_js}; // Now receiving Python error
console.log("JS: DOMContentLoaded. Initial isLoading:", isLoading, "Error:", errorMessage);
const loadingOverlay = document.getElementById('loading-overlay');
const contentWrapper = document.getElementById('content-wrapper');
const metricsGridEl = document.getElementById('metrics-grid');
const techSummaryEl = document.getElementById('tech-summary');
const predictionResultEl = document.getElementById('predictionResult');
const predictionDetailsContainerEl = document.getElementById('predictionDetailsContainer');
const predictionTableEl = document.getElementById('predictionTable');
const dashboardErrorMessageEl = document.getElementById('dashboard-error-message');
let priceChart;
let volumeChart;
function parseData(jsonData) {{
try {{
if (!jsonData || !jsonData.columns) return null;
return {{
dates: jsonData.data.map(row => new Date(row[jsonData.columns.indexOf('Date')])),
prices: jsonData.data.map(row => row[jsonData.columns.indexOf('Close')]),
volumes: jsonData.data.map(row => row[jsonData.columns.indexOf('Volume')]),
highs: jsonData.data.map(row => row[jsonData.columns.indexOf('High')]),
}};
}} catch (e) {{
console.error("JS: Error parsing historical data:", e);
return null;
}}
}}
function parsePredictions(jsonData) {{
try {{
if (!jsonData || !jsonData.columns) return [];
return jsonData.data.map(row => ({{
x: new Date(row[jsonData.columns.indexOf('Date')]),
y: row[jsonData.columns.indexOf('Predicted Price')],
upperCI: row[jsonData.columns.indexOf('Upper CI')],
lowerCI: row[jsonData.columns.indexOf('Lower CI')]
}}));
}} catch (e) {{
console.error("JS: Error parsing prediction data:", e);
return [];
}}
}}
function displayMetric(elementId, value, prefix = '', suffix = '', decimals = 0) {{
const el = document.getElementById(elementId);
if (el) {{
el.textContent = prefix + value.toLocaleString(undefined, {{ minimumFractionDigits: decimals, maximumFractionDigits: decimals }}) + suffix;
}}
}}
function updateMetrics(data) {{
if (!data || data.prices.length < 2) {{
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-4">Not enough historical data to display metrics.</div>`;
return;
}}
const currentPrice = data.prices[data.prices.length - 1];
const prevPrice = data.prices[data.prices.length - 2];
const change = currentPrice - prevPrice;
const changePct = (change / prevPrice) * 100;
const volume = data.volumes[data.volumes.length - 1];
const sharesOutstanding = 10.33 * 1e9; // Example value
const marketCap = currentPrice * sharesOutstanding;
const metrics = [
{{ id: 'price', title: 'Current Price', value: currentPrice, change: `${{change >= 0 ? '+' : ''}}${{change.toFixed(2)}} (${{changePct.toFixed(2)}}%)`, status: change >= 0 ? 'positive' : 'negative', icon: 'fa-dollar-sign', prefix: '$', decimals: 2 }},
{{ id: 'market-cap', title: 'Market Cap', value: marketCap, change: 'USD', status: 'neutral', icon: 'fa-building', prefix: '$', suffix: '', decimals: 2, isCurrency: true }},
{{ id: 'volume', title: 'Daily Volume', value: volume, change: 'Shares Traded', status: 'neutral', icon: 'fa-chart-bar', suffix: '', decimals: 0 }},
{{ id: '52-week-high', title: '52-Week High', value: Math.max(...data.highs.slice(-252)), change: 'Annual Peak', status: 'neutral', icon: 'fa-arrow-trend-up', prefix: '$', decimals: 2 }},
];
metricsGridEl.innerHTML = metrics.map(metric => `<div class="metric-card p-5"><div class="flex items-center justify-between"><p class="text-sm font-medium text-slate-500">${{metric.title}}</p><div class="text-2xl text-slate-300"><i class="fas ${{metric.icon}}"></i></div></div><p class="text-3xl font-bold text-slate-900 mt-2" id="${{metric.id}}">0</p><p class="text-xs ${{metric.status}} mt-1 font-semibold">${{metric.change}}</p></div>`).join('');
metrics.forEach(metric => {{
let displayValue = metric.value;
let displaySuffix = metric.suffix;
let displayDecimals = metric.decimals;
if (metric.isCurrency) {{
if (metric.value >= 1e12) {{
displayValue = metric.value / 1e12;
displaySuffix = 'T';
displayDecimals = 2;
}} else if (metric.value >= 1e9) {{
displayValue = metric.value / 1e9;
displaySuffix = 'B';
displayDecimals = 2;
}} else if (metric.value >= 1e6) {{
displayValue = metric.value / 1e6;
displaySuffix = 'M';
displayDecimals = 2;
}}
}}
if (metric.id === 'volume') {{
if (metric.value >= 1e9) {{
displayValue = metric.value / 1e9;
displaySuffix = 'B';
displayDecimals = 2;
}} else if (metric.value >= 1e6) {{
displayValue = metric.value / 1e6;
displaySuffix = 'M';
displayDecimals = 2;
}} else if (metric.value >= 1e3) {{
displayValue = metric.value / 1e3;
displaySuffix = 'K';
displayDecimals = 2;
}}
}}
displayMetric(metric.id, displayValue, metric.prefix || '', displaySuffix, displayDecimals);
}});
}}
function updateTechSummary(data) {{
if (!data || data.prices.length < 50) {{ // Need enough data for 50-day SMA
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">Not enough data for full technical analysis (min 50 days required).</p>';
return;
}}
const prices = data.prices;
const lastPrice = prices[prices.length - 1];
// Ensure slice has enough elements
const sma20 = prices.slice(-20).length >= 20 ? prices.slice(-20).reduce((a, b) => a + b, 0) / 20 : NaN;
const sma50 = prices.slice(-50).length >= 50 ? prices.slice(-50).reduce((a, b) => a + b, 0) / 50 : NaN;
let gains = [];
let losses = [];
for (let i = 1; i < prices.length; i++) {{
let diff = prices[i] - prices[i-1];
if (diff > 0) {{
gains.push(diff);
losses.push(0);
}} else {{
gains.push(0);
losses.push(Math.abs(diff));
}}
}}
let avgGain = 0;
let avgLoss = 0;
if (gains.length >= 14) {{
avgGain = gains.slice(-14).reduce((a, b) => a + b, 0) / 14;
avgLoss = losses.slice(-14).reduce((a, b) => a + b, 0) / 14;
}} else if (gains.length > 0) {{
avgGain = gains.reduce((a, b) => a + b, 0) / gains.length;
avgLoss = losses.reduce((a, b) => a + b, 0) / losses.length;
}}
let rs = (avgLoss === 0 || isNaN(avgLoss)) ? (avgGain > 0 ? Infinity : 0) : avgGain / avgLoss;
let rsi = 100 - (100 / (1 + rs));
if (isNaN(rsi)) rsi = 0;
let rsiClass = 'neutral';
if (rsi > 70) rsiClass = 'negative';
else if (rsi < 30) rsiClass = 'positive';
const summary = [
{{ label: 'SMA (20 Day)', value: isNaN(sma20) ? 'N/A' : `$${{sma20.toFixed(2)}}`, status: lastPrice > sma20 ? 'positive' : (isNaN(sma20) ? 'neutral' : 'negative') }},
{{ label: 'SMA (50 Day)', value: isNaN(sma50) ? 'N/A' : `$${{sma50.toFixed(2)}}`, status: lastPrice > sma50 ? 'positive' : (isNaN(sma50) ? 'neutral' : 'negative') }},
{{ label: 'RSI (14 Day)', value: rsi.toFixed(1), status: rsiClass }}
];
techSummaryEl.innerHTML = summary.map(item => `<div class="flex justify-between items-center text-sm"><span class="text-slate-600">${{item.label}}</span><span class="font-semibold ${{item.status}}">${{item.value}}</span></div>`).join('');
}}
function renderCharts(data, predictions) {{
// Render Price Chart
const priceCtx = document.getElementById('priceChart').getContext('2d');
if (priceChart) priceChart.destroy();
const priceDatasets = [
{{
label: 'Historical Price',
data: data.dates.map((d, i) => ({{x: d, y: data.prices[i]}})),
borderColor: '#3b82f6',
backgroundColor: 'rgba(59, 130, 246, 0.1)',
borderWidth: 2,
pointRadius: 0,
fill: true,
tension: 0.3
}}
];
if (predictions.length > 0) {{
priceDatasets.push({{
label: 'AI Prediction',
data: predictions,
borderColor: '#10b981',
borderWidth: 2,
pointRadius: 2,
borderDash: [5, 5],
fill: false,
tension: 0.3
}});
// Add confidence interval
const confidenceData = [
...predictions.map(p => ({{x: p.x, y: p.lowerCI}})),
...predictions.map(p => ({{x: p.x, y: p.upperCI}})).reverse()
];
priceDatasets.push({{
label: '95% Confidence',
data: confidenceData,
fill: '1',
backgroundColor: 'rgba(234, 179, 8, 0.2)',
borderColor: 'transparent',
pointRadius: 0
}});
}}
priceChart = new Chart(priceCtx, {{
type: 'line', // Explicitly define type
data: {{ datasets: priceDatasets }},
options: {{
responsive: true,
maintainAspectRatio: false,
scales: {{
x: {{
type: 'time',
time: {{
unit: 'month',
tooltipFormat: 'MMM d, yyyy'
}},
grid: {{ display: false }}
}},
y: {{
title: {{ display: true, text: 'Price (USD)' }},
grid: {{ color: '#f1f5f9' }}
}}
}},
plugins: {{
legend: {{
display: true,
position: 'top',
align: 'end'
}},
tooltip: {{
mode: 'index',
intersect: false,
callbacks: {{
title: function(context) {{
return context[0].label;
}},
label: function(context) {{
let label = context.dataset.label || '';
if (label) label += ': ';
label += '$' + context.parsed.y.toFixed(2);
if (context.dataset.label === 'AI Prediction' && predictions.length > 0) {{
const predictionPoint = predictions.find(p => p.x.getTime() === context.parsed.x);
if (predictionPoint) {{
label += ` (CI: $${{predictionPoint.lowerCI.toFixed(2)}} - $${{predictionPoint.upperCI.toFixed(2)}})`;
}}
}}
return label;
}}
}}
}}
}}
}}
}});
// Render Volume Chart
const volumeCtx = document.getElementById('volumeChart').getContext('2d');
if (volumeChart) volumeChart.destroy();
volumeChart = new Chart(volumeCtx, {{
type: 'bar', // Explicitly define type
data: {{
datasets: [{{
label: 'Volume',
data: data.dates.map((d, i) => ({{x: d, y: data.volumes[i]}})),
backgroundColor: '#e2e8f0',
borderColor: '#cbd5e1',
borderWidth: 1
}}]
}},
options: {{
responsive: true,
maintainAspectRatio: false,
scales: {{
x: {{
type: 'time',
time: {{
unit: 'month'
}},
grid: {{ display: false }}
}},
y: {{
title: {{ display: true, text: 'Volume' }},
grid: {{ color: '#f1f5f9' }},
ticks: {{
callback: function(value) {{
if (value >= 1e9) return (value / 1e9).toFixed(0) + 'B';
if (value >= 1e6) return (value / 1e6).toFixed(0) + 'M';
if (value >= 1e3) return (value / 1e3).toFixed(0) + 'K';
return value;
}}
}}
}}
}},
plugins: {{
legend: {{
display: false
}},
tooltip: {{
callbacks: {{
label: function(context) {{
let label = context.dataset.label || '';
if (label) label += ': ';
let value = context.parsed.y;
if (value >= 1e9) label += (value / 1e9).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'B';
else if (value >= 1e6) label += (value / 1e6).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'M';
else if (value >= 1e3) label += (value / 1e3).toLocaleString(undefined, {{maximumFractionDigits: 1}}) + 'K';
else label += value.toLocaleString();
return label;
}}
}}
}}
}}
}}
}});
}}
function displayPredictions(data, predictions) {{
if (!data || predictions.length === 0) {{
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No predictions available or not enough data for prediction.</p>';
return;
}}
predictionDetailsContainerEl.classList.remove('hidden');
const lastHistoricalPrice = data.prices[data.prices.length - 1];
const finalPredictedPrice = predictions[predictions.length - 1].y;
const changeOverall = finalPredictedPrice - lastHistoricalPrice;
const changePctOverall = (changeOverall / lastHistoricalPrice) * 100;
const statusClass = changeOverall >= 0 ? 'positive' : 'negative';
predictionResultEl.innerHTML = `<p class="text-sm text-slate-500">Predicted price in ${{predictions.length}} days:</p><p class="text-3xl font-bold mt-1 ${{statusClass}}">$${{finalPredictedPrice.toFixed(2)}} <span class="text-base font-normal">(${{changeOverall >= 0 ? '+' : ''}}${{changeOverall.toFixed(2)}} / ${{changePctOverall.toFixed(2)}}%)</span></p>`;
const tableRows = predictions.map(p => `
<tr>
<td>${{new Date(p.x).toLocaleDateString()}}</td>
<td class="font-semibold">$${{p.y.toFixed(2)}}</td>
<td>$${{p.lowerCI.toFixed(2)}} - $${{p.upperCI.toFixed(2)}}</td>
</tr>
`).join('');
predictionTableEl.innerHTML = `
<table>
<thead>
<tr>
<th>Date</th>
<th>Predicted Price</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>${{tableRows}}</tbody>
</table>
`;
}}
function loadDashboard() {{
console.log("JS: loadDashboard() called. Current isLoading:", isLoading, "Error:", errorMessage);
const statusMessageEl = document.getElementById('status-message');
// Handle loading overlay visibility
if (isLoading === 'true') {{
statusMessageEl.classList.remove('hidden');
dashboardErrorMessageEl.classList.add('hidden'); // Hide any previous error
return; // Stop execution, let Streamlit re-run and call again when done
}} else {{
console.log("JS: in() called. Current isLoading:", isLoading, "Error:", errorMessage);
statusMessageEl.classList.add('hidden');
}}
// Handle errors
if (errorMessage && errorMessage !== 'null') {{
dashboardErrorMessageEl.textContent = "Error: " + errorMessage;
dashboardErrorMessageEl.classList.remove('hidden');
// Clear existing charts if any, and other content
if (priceChart) priceChart.destroy();
if (volumeChart) volumeChart.destroy();
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-8 info-card">An error occurred. Please check the ticker or model.</div>`;
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No results due to error.</p>';
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">No technical summary due to error.</p>';
return;
}} else {{
dashboardErrorMessageEl.classList.add('hidden'); // Ensure error message is hidden if no error
}}
// If no error and not loading, proceed to render dashboard
const historicalData = parseData(historicalDataJson);
const predictionData = parsePredictions(predictionDataJson);
if (!historicalData) {{
metricsGridEl.innerHTML = `<div class="col-span-full text-center text-slate-500 p-8 info-card">Click "Generate Dashboard" in the sidebar to load data.</div>`;
predictionDetailsContainerEl.classList.add('hidden');
predictionResultEl.innerHTML = '<p class="text-sm text-slate-500">No data loaded yet.</p>';
techSummaryEl.innerHTML = '<p class="text-sm text-slate-500">No data for technical summary.</p>';
if (priceChart) priceChart.destroy();
if (volumeChart) volumeChart.destroy();
console.log("JS: No historical data available to render dashboard.");
return;
}}
updateMetrics(historicalData);
updateTechSummary(historicalData);
renderCharts(historicalData, predictionData); // Renamed to plural as it handles both
displayPredictions(historicalData, predictionData);
console.log("JS: Dashboard loaded successfully.");
}}
loadDashboard(); // Initial call when DOM is ready
}});
</script>
</body>
</html>
"""
# --- Embed HTML Component in Streamlit ---
# No need for st.error here, as the JS will handle displaying the error in the HTML component
components.html(html_code, height=1200, scrolling=True)