File size: 30,342 Bytes
91b1fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d826e76
91b1fd9
 
 
 
 
 
 
4bad958
91b1fd9
 
 
 
 
 
8696997
91b1fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8696997
91b1fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fcbbc
91b1fd9
 
 
 
 
 
 
 
cf5e603
91b1fd9
 
 
 
 
 
cf5e603
91b1fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27fcbbc
91b1fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
import streamlit as st


# Set the page layout
st.set_page_config(layout="wide")
import time
import base64
import tensorflow as tf
import numpy as np
from PIL import Image
import torch
import os
import torch.nn as nn
from torchvision import transforms
import torch.nn.functional as F

if "model" not in st.session_state:
    st.session_state.model = tf.keras.models.load_model('best_model.keras')
if "choice" not in st.session_state:
    st.session_state.choice = "tensorflow"
    
    
#import matplotlib.pyplot as plt
# Path to your logo image
main_bg_ext = 'png'
main_bg = 'download (3).jfif'
#****************************************************************
# TENSORFLOW MODEL CONFIGURATION
#****************************************************************
class_labels=[ 'Cyst', 'Normal','Stone', 'Tumor']
def load_tensorflow_model():
    # Example: Load a pre-trained model (e.g., MobileNetV2)
    tf_model = tf.keras.models.load_model('best_model.keras')
    return tf_model
def predict_image(image):
    time.sleep(2)  
    image = image.resize((64, 64))  
    image = np.array(image) / 255.0  
    image = np.expand_dims(image, axis=0)  
    predictions = st.session_state.model.predict(image)
    return predictions
#****************************************************************
# PYTORCH MODEL CONFIGURATION
#****************************************************************



class CNNModel(nn.Module):
    def __init__(self, input_channels=3, num_classes=4):
        super(CNNModel, self).__init__()
        
        self.conv1 = nn.Conv2d(input_channels, 32, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(32)
        self.pool1 = nn.MaxPool2d(2, 2)

        self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        self.pool2 = nn.MaxPool2d(2, 2)

        self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(128)
        self.pool3 = nn.MaxPool2d(2, 2)

        self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.bn4 = nn.BatchNorm2d(256)
        self.pool4 = nn.MaxPool2d(2, 2)

        self.flatten = nn.Flatten()
        
        self.fc1 = nn.Linear(256 * 4 * 4, 512)  
        self.dropout1 = nn.Dropout(0.4)
        
        self.fc2 = nn.Linear(512, 256)
        self.dropout2 = nn.Dropout(0.3)
        
        self.fc3 = nn.Linear(256, num_classes)
    
    def forward(self, x):
        x = self.pool1(torch.relu(self.bn1(self.conv1(x))))
        x = self.pool2(torch.relu(self.bn2(self.conv2(x))))
        x = self.pool3(torch.relu(self.bn3(self.conv3(x))))
        x = self.pool4(torch.relu(self.bn4(self.conv4(x))))
        
        x = self.flatten(x)
        x = self.dropout1(torch.relu(self.fc1(x)))
        x = self.dropout2(torch.relu(self.fc2(x)))
        x = self.fc3(x)
        
        return x

#*************************************************************
def predict_with_pytorch(image):
    # Defining the preprocessing pipeline
    preprocess = transforms.Compose([
        transforms.Resize((64, 64)),  
        transforms.ToTensor(),        
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),  
    ])
    
    # Applying preprocessing transformations
    image = preprocess(image).unsqueeze(0) 
    
    # Check if the image has the correct shape
    print(f"Image shape after preprocessing: {image.shape}")
    
    with torch.no_grad():
        output = st.session_state.model(image)  

        probabilities = F.softmax(output, dim=1)

        class_probabilities = probabilities.squeeze().tolist()  
        predicted_classes = torch.argsort(probabilities, dim=1, descending=True)  #

    # Return all classes and their probabilities
    result_dict = {}
    for idx, prob in zip(predicted_classes[0], class_probabilities):
        result_dict[idx.item()] = prob  

    return result_dict  


#**********************************************************

def load_pytorch_model():
    # Example: Load a pre-trained model (e.g., ResNet18)
    model = torch.load('torch_model.pth', map_location=torch.device('cpu'))  # Forces the model to load on CPU

    model.eval()
    return model
#****************************************************************
# PYTORCH  MODEL CONFIGURATION
#****************************************************************


# Custom CSS to style the logo above the sidebar and other elements
st.markdown(
    f"""
    <style>
       /* Container for logo and text */
        .logo-text-container {{
            position: fixed;
            top: 30px; /* Adjust vertical position */
            left: 50px; /* Align with sidebar */
            display: flex;
            align-items: center;
            gap: 15px;
            justify-content: space-between;
            width: 100%;
        }}

        /* Logo styling */
        .logo-text-container img {{
            width: 130px; /* Adjust logo size */
            border-radius: 10px; /* Optional: round edges */
            margin-top: 10px;
            margin-left: 20px;
        }}

        /* Bold text styling */
        .logo-text-container h1 {{
            font-family: 'Times New Roman', serif;
            font-size: 24px;
            font-weight: bold;
            text-align: center;
            color: #FFD700; /* Golden color for text */
        }}

        /* Sidebar styling */
        section[data-testid="stSidebar"][aria-expanded="true"] {{
            margin-top: 100px !important; /* Space for the logo */
            border-radius: 0 60px 0px 60px !important; /* Top-left and bottom-right corners */
            width: 200px !important; /* Sidebar width */
            background: none; /* No background */
            color: white !important;
        }}

        header[data-testid="stHeader"] {{
            background: transparent !important;
            margin-right: 100px !important;
            margin-top: 1px !important;
            z-index: 1 !important;
            
        color: blue; /* White text */
        font-family:  "Times New Roman " !important; /* Font */
        font-size: 18px !important; /* Font size */
        font-weight: bold !important; /* Bold text */
        padding: 10px 20px; /* Padding for buttons */
        border: none; /* Remove border */
        border-radius: 35px; /* Rounded corners */
        box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
        transition: all 0.3s ease-in-out; /* Smooth transition */
         display: flex;
        align-items: center;
        justify-content: center;
        margin: 10px 0;
        width:90%;
        left:5.5%;
        height:60px;
        margin-top:70px;
        backdrop-filter: blur(10px);
        border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */

        }}

        div[data-testid="stDecoration"] {{
            background-image: none;
        }}

        div[data-testid="stApp"] {{
          background: url(data:image/{main_bg_ext};base64,{base64.b64encode(open(main_bg, "rb").read()).decode()});
          background-size: cover;  /* Ensure the image covers the full page */
          background-position: center;
            height: 98vh;
            width: 98%;
            border-radius: 20px !important;
            margin-left: 10px;
            margin-right: 10px;
            margin-top: 10px;
            overflow: hidden;
            backdrop-filter: blur(10px); /* Glass effect */
            -webkit-backdrop-filter: blur(10px);
            border: 1px solid rgba(255, 255, 255, 0.2); /* Light border */

        }}

        div[data-testid="stSidebarNav"] {{
            display: none;
        }}

        /* Styling for the content container */
         [class*="st-key-content-container-1"] {{
 
             background: rgba(255, 255, 255, 0.5);  /* Semi-transparent white background */
        border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */

            backdrop-filter: blur(10px);  /* Apply blur effect */
            -webkit-backdrop-filter: blur(10px);  /* For Safari compatibility */
            border-radius: 20px;
            padding: 20px;
            box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);  /* Subtle shadow for depth */
            width: 98%;  /* Make it span across most of the screen */
            margin-left: 0.5%;
            margin-right: 0.5%;
            height: 92.5vh; /* Adjust to fill most of the screen */
            overflow-y: auto; /* Enable vertical scrolling */
            position: fixed; /* Keep the container fixed on the screen */
            top: 3.5%;  /* Adjust top margin */
            left: 0.5%;  /* Adjust left margin */
            z-index: 0; /* Keep behind sidebar and header */
            margin-bottom:2%;

        }}
          [class*="st-key-content-container-3"] {{
             
            width: 28%;  /* Make it span across most of the screen */
           position:fixed;
            top: -0.9%;  /* Adjust top margin */
            left: 11%;  /* Adjust left margin */
            z-index: 1; /* Keep behind sidebar and header */
            padding-left:20px;
            align-item:center;
            border: 2px solid rgba(255, 255, 255, 0.4); /* Light border */
           background: transparent !important;
            margin-right: 100px !important;
            border-right: 2px solid rgba(255, 255, 155, 0.4); /* Light border */

            z-index: 1 !important;
            
        color: blue; /* White text */
        font-family:  "Times New Roman " !important; /* Font */
        font-size: 18px !important; /* Font size */
        font-weight: bold !important; /* Bold text */
        padding: 10px 20px; /* Padding for buttons */
        border: none; /* Remove border */
        border-radius: 35px; /* Rounded corners */
        transition: all 0.3s ease-in-out; /* Smooth transition */
         display: flex;
        align-items: center;
        justify-content: center;
        margin: 10px 0;
        
        height:60px;
        

            

        }}
        /* Styling for the content container */
         [class*="st-key-content-container-2"] {{
            background-color: transparent; /* Transparent background */
            border-radius: 20px;
            padding: 20px;
            width: 50%;  /* Make it span across most of the screen */

            height: 85vh; /* Adjust to fill most of the screen */
            overflow-y: auto; /* Enable vertical scrolling */
            position: fixed; /* Keep the container fixed on the screen */
            top: 7%;  /* Adjust top margin */
            left: 49.5%;  /* Adjust left margin */
            right:2%;
            border-left: 3px solid rgba(255, 255, 155, 0.9); /* Light border */

        }}

        /* Button row styling */
        .button-row {{
            display: flex;
            justify-content: flex-start;
            gap: 20px;
            margin-bottom: 20px;
        }}

        .custom-button {{
            width: 100px;
            height: 40px;
            border-radius: 10px;
            background-color: #007BFF;
            color: white;
            border: none;
            cursor: pointer;
            font-size: 16px;
        }}

        .custom-button:hover {{
            background-color: #0056b3;
        }}
        div.stButton > button {{                
        background: rgba(255, 255, 255, 0.2);
        color: blue; /* White text */
        font-family:  "Times New Roman " !important; /* Font */
        font-size: 18px !important; /* Font size */
        font-weight: bold !important; /* Bold text */
        padding: 10px 20px; /* Padding for buttons */
        border: none; /* Remove border */
        border-radius: 35px; /* Rounded corners */
        box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.2); /* Shadow effect */
        transition: all 0.3s ease-in-out; /* Smooth transition */
         display: flex;
        align-items: center;
        justify-content: center;
        margin: 10px 0;
        width:160px;
        height:50px;
        margin-top:5px;

    }}

    /* Hover effect */
    div.stButton > button:hover {{
        background: rgba(255, 255, 255, 0.2);
        box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.4); /* Enhanced shadow on hover */
        transform: scale(1.05); /* Slightly enlarge button */
        transform: scale(1.1); /* Slight zoom on hover */
        box-shadow: 0px 4px 12px rgba(255, 255, 255, 0.4); /* Glow effect */
    }}
     /* Outer large circle with transparent background */
        .outer-circle {{
            width: 350px;
            height: 350px;
            border-radius: 40%; /* Circular shape */
            background-color: transparent; /* Transparent background */
            border: 1px solid white; /* Golden border */
            display: flex;
            justify-content: center;
            align-items: center;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); /* Shadow for depth */
        }}

        /* Inner smaller circle with light grey background */
        .inner-circle {{
            width: 330px;
            height: 330px;
             backdrop-filter: blur(10px);
            background: rgba(255, 255, 255, 0.2);

            border-radius: 40%; /* Circular shape */
            display: flex;
            justify-content: center;
            align-items: center;
            overflow: hidden; /* Ensure image is contained within the circle */
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.4); /* Shadow for depth */
             border: 1px solid white; /* Golden border */

        }}

        /* Style for the image to fit within the inner circle */
        .inner-circle img {{
            width: 100%;
            height: 100%;
            object-fit: cover; /* Ensure the image covers the circular area */
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); /* Shadow for depth */

        }}
          /* Style for the upload button */
        [class*="st-key-upload-btn"] {{
            position: absolute;
            top: 50%; /* Position from the top of the inner circle */
            left: 5%; /* Position horizontally at the center */
            transform: translateX(-40%); /* Adjust to ensure it's centered */
            padding: 10px 20px;
            color: black;
            border: none;
            border-radius: 20px;
            cursor: pointer;
            font-size: 23px;
            with:300px;
            height:100px;
            z-index:1000;
        }}

        .upload-btn:hover {{
            background-color: rgba(0, 123, 255, 1);
        }}
          div[data-testid="stFileUploader"] label > div > p {{
            display:none;
            color:white !important;
        }}
        section[data-testid="stFileUploaderDropzone"] {{
          width:190px;
        height: 120px;
        background-color: white;
        border-radius: 40px;
        display: flex;
        justify-content: center;
        align-items: center;
        margin-top:-10px;
        box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.3);
        margin:20px;
        background-color: rgba(255, 255, 255, 0.7); /* Transparent blue background */
        color:white;
        }}
        div[data-testid="stFileUploaderDropzoneInstructions"] div > small{{
           color:white !important;
           display:none;
        }}
         div[data-testid="stFileUploaderDropzoneInstructions"] span{{
          margin-left:60px;
        }}
        div[data-testid="stFileUploaderDropzoneInstructions"] div{{
          display:none;
        }}
       section[data-testid="stFileUploaderDropzone"] button{{
        display:none;
       }}
         div[data-testid="stMarkdownContainer"] p {{
            font-family: "Times New Roman" !important; /* Elegant font for title */
            color:white !important;
        }}
       .title {{
   font-family: "Times New Roman" !important; /* Elegant font for title */
    font-size: 1.rem;
    font-weight: bold;
    margin-left: 37px;
    margin-top:10px;
    margin-bottom:-100px;
    padding: 0;
    color: #333; /* Neutral color for text */
    }}

    </style>
  
    """,
    unsafe_allow_html=True,
)
st.markdown(
    """
    <style>
        /* Outer container to define the grid */
        .grid-container {
            display: grid;
            grid-template-columns: repeat(2 1fr);  /* 2 columns */
            grid-template-rows: repeat(2, 1fr);     /* 2 rows */
            gap: 20px;  /* Space between containers */
            width: 90%;
            height: 5vh;
             align-items: center;
        }

        /* Individual grid items (containers) */
        .grid-item {
            padding: 20px;
            border-radius: 10px;
            box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
            display: flex;
            justify-content: left;
            align-items: center;
            text-align: left;
            background: rgba(0, 0, 0, 0.2);  /* Semi-transparent white background */

            border-radius: 20px;
            padding: 20px;
            width: 80%;  /* Make it span across most of the screen */
            margin-left: 0.5%;
            margin-right: 0.5%;
        }

        /* Optional styling for the subheader and content */
        .grid-item h3 {
            margin: 0;
            color: #333;
            font-size:18px;
            width:100px;
             font-family: "Times New Roman" !important; /* Elegant font for title */
            font-size: 1.rem;
            font-weight: bold;
        }

        .grid-item p {
            color: #555;
        }
        .title-container {
            display: flex;
            align-items: center;  /* Vertically center the title and the image */
        }
        .title-container img {
            width: 40px;  /* Adjust the size of the image */
            height: 40px; /* Adjust the size of the image */
            margin-right: 10px; /* Space between the image and the title */
        }
        .title {
            font-size: 20px;
            font-weight: bold;
        }
    </style>
    """, unsafe_allow_html=True
)


   
                       


# Create the main content area
with st.container(key="content-container-3"):
     col1,_, col2 = st.columns([2,4, 2])
     with col1:
        if st.button(" Tensorflow"):
            st.session_state.model = load_tensorflow_model()
            st.session_state.choice = "tensorflow"
     with col2:
        if st.button(" Pytorch"):
            st.session_state.model = load_pytorch_model()
            st.session_state.choice = "pytorch"
with st.container(key="content-container-1"):

    image_path = "Load.png"
    col1, col2 = st.columns([1, 9])
    with col1:
       st.write("")
            
    with col2:
        st.write("")
        if st.session_state.choice == "tensorflow":
            st.markdown(f""" <div class="title-container">
        <img src="data:image/png;base64,{base64.b64encode(open("tensorflow.png","rb").read()).decode()}" alt="Uploaded Image">
 <h2 class="title">Tensorflow Model Information</h2></div>""", unsafe_allow_html=True)
            st.write("This is a Convolutional Neural Network (CNN) model trained on image data.")
            st.write(f"Input Shape: (64, 64, 3)")
            st.write(f"Output Classes: {4} classes")
        else :
                    st.markdown(f""" <div class="title-container">
                <img src="data:image/png;base64,{base64.b64encode(open("pytorch.png","rb").read()).decode()}" alt="Uploaded Image">
        <h2 class="title">Pytorch Model Information</h2></div>""", unsafe_allow_html=True)
                    st.write("This is a Convolutional Neural Network (CNN) model trained on image data.")
                    st.write(f"Input Shape: (64, 64, 3)")
                    st.write(f"Output Classes: {4} classes")

        col3, col4 = st.columns([3, 7])
        with col3:
            uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg", "jpeg"],key="upload-btn")
            if uploaded_file is not None:

              
                with open(image_path, "rb") as image_file:
                    encoded_image = base64.b64encode(image_file.read()).decode()

                # Display the circular container with the image inside
                st.markdown(
                    f"""
                    <div class="outer-circle">
                    <div class="inner-circle">
                    <img src="data:image/png;base64,{base64.b64encode(uploaded_file.read()).decode()}" alt="Uploaded Image">

                    </div>

                    </div>
                """,
                    unsafe_allow_html=True,
                )
            else:
                default_image_path = "Load.png"  
                with open(default_image_path, "rb") as image_file:
                        encoded_image = base64.b64encode(image_file.read()).decode()


                # Display the circular container with the image inside
                st.markdown(
                    f"""
                    <div class="outer-circle">
                    <div class="inner-circle">
                     <img src="data:image/png;base64,{encoded_image}" alt="Default Image">

                    </div>

                    </div>
                """,
                    unsafe_allow_html=True,
                )
                 
        with col4:
            with st.container(key="content-container-2"):
                if uploaded_file != None:
                    images = Image.open(uploaded_file)

                    with st.spinner("Processing the image..."):
                       
                        progress_bar = st.progress(0)                   
                        for i in range(1, 11):
                             
                             time.sleep(0.6)  # Simulated delay for each progress increment
                             progress_bar.progress(i * 10)  
                  
                        
                    if st.session_state.choice == "tensorflow":
                         prediction = predict_image(images)
                         max_index = int(np.argmax(prediction[0]))
                         max_score = prediction[0][max_index]
                         descriptive_message = ""
                         if max_index == 0:
                            descriptive_message = f"""
                            This image is likely to  represent a <b>{class_labels[max_index]} kideney</b>  ,which is an indication of healthy tissue with no signs of abnormal growth. 
                            We recommend maintaining a healthy lifestyle and continuing regular health check-ups to ensure the body remains in a natural, healthy state.
                            """
                         elif max_index == 1:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is a fluid-filled sac that forms in various body parts. 
                            Cysts are typically benign and may not require treatment unless they grow large or become infected. We recommend monitoring the cyst and consulting a healthcare provider if you notice any changes.
                            """
                         elif max_index == 2:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is a solid mass that forms in organs like the kidneys or bladder due to crystallization of minerals or salts. 
                            Stones can be painful, and treatment may include passing them naturally or removing them surgically. We recommend staying hydrated and avoiding excessive salt intake to prevent stones from forming.
                            """
                         else:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[max_index]} kideney</b>, which is an abnormal growth of tissue. Tumors can be benign or malignant, and further testing is required to determine the exact nature. 
                            We recommend consulting a healthcare provider for further investigation and treatment if necessary.
                            """

                         if prediction is not None and len(prediction) > 0:  # Check if prediction is valid
                                divs = f"""
                                <div class="grid-container">
                                    <div class="grid-item">
                                        <h3>{class_labels[0]}</h3>
                                        <p>T Score: {prediction[0][0]:.2f}</p>
                                    </div>
                                    <div class="grid-item">
                                        <h3> {class_labels[1]}</h3>
                                        <p>T Score: {prediction[0][1]:.2f}</p>
                                    </div>
                                    <div class="grid-item">
                                        <h3> {class_labels[2]}</h3>
                                        <p>T Score: {prediction[0][2]:.2f}</p>
                                    </div>
                                    <div class="grid-item">
                                        <h3>{class_labels[3]}</h3>
                                        <p>T Score: {prediction[0][3]:.2f}</p>
                                    </div>
                                    <h2 class = "title">Prediction: {class_labels[max_index]} with confidence {prediction[0][max_index]:.2f}</h2>
                            <p>{descriptive_message}</p>
                                </div>
                                """

                                st.markdown(divs, unsafe_allow_html=True)

                    else :
                         predictions = predict_with_pytorch(images)
                         predictiont =list( predictions.keys())
                         
                         predicted_index = max(predictions, key=predictions.get)
                         print(f"classe {predictions}")
                         print(f"classes {predicted_index}")
                         descriptive_message = ""
                         if predicted_index == 0:
                            descriptive_message = f"""
                            This image is likely to  represent a <b>{class_labels[predicted_index]} kideney</b>, which is an indication of healthy tissue with no signs of abnormal growth. 
                            We recommend maintaining a healthy lifestyle and continuing regular health check-ups to ensure the body remains in a natural, healthy state.
                            """
                         elif predicted_index == 1:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is a fluid-filled sac that forms in various body parts. 
                            Cysts are typically benign and may not require treatment unless they grow large or become infected. We recommend monitoring the cyst and consulting a healthcare provider if you notice any changes.
                            """
                         elif predicted_index == 2:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is a solid mass that forms in organs like the kidneys or bladder due to crystallization of minerals or salts. 
                            Stones can be painful, and treatment may include passing them naturally or removing them surgically. We recommend staying hydrated and avoiding excessive salt intake to prevent stones from forming.
                            """
                         else:
                            descriptive_message = f"""
                            This image is likely to represent a <b>{class_labels[predicted_index]} kideney</b>, which is an abnormal growth of tissue. Tumors can be benign or malignant, and further testing is required to determine the exact nature. 
                            We recommend consulting a healthcare provider for further investigation and treatment if necessary.
                            """

                     # Once preprocessing is done, show the content (grid in your case)
                         if predictiont:
                            st.markdown(f"""
                                        <div class="grid-container">
                                            <div class="grid-item">
                                            <h3>{class_labels[predictiont[0]]} </h3>
                                                <p>T Score: {predictions[predictiont[0]]:.2f}</p>
                                            </div>
                                            <div class="grid-item">
                                            <h3>{class_labels[predictiont[1]]}  </h3>
                                                <p>T Score: {predictions[predictiont[1]]:.2f}</p>
                                            </div>
                                            <div class="grid-item">
                                            <h3> {class_labels[predictiont[2]]} </h3>
                                                <p>T Score: {predictions[predictiont[2]]:.2f}</p>
                                            </div>
                                            <div class="grid-item">
                                            <h3>{class_labels[predictiont[3]]} </h3>
                                                <p>T Score: {predictions[predictiont[3]]:.2f}</p>
                                            </div>
                                              <h2 class = "title">Prediction: {class_labels[predicted_index]} with confidence {predictions[predicted_index]:.2f}</h2>
                            <p>{descriptive_message}</p>
                                        </div>
                                        """, unsafe_allow_html=True
                                    )