Spaces:
Sleeping
Sleeping
import joblib | |
import numpy as np | |
import pandas as pd | |
import json | |
from sklearn.model_selection import train_test_split | |
from sklearn.ensemble import RandomForestClassifier | |
from sklearn.metrics import accuracy_score | |
# Load dataset | |
data = pd.read_csv("diabetes.csv") | |
X = data.drop('Outcome', axis=1) | |
y = data['Outcome'] | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Train model | |
model = RandomForestClassifier(n_estimators=100, random_state=42) | |
model.fit(X_train, y_train) | |
# Evaluate | |
y_pred = model.predict(X_test) | |
accuracy = accuracy_score(y_test, y_pred) | |
# Save model | |
joblib.dump(model, 'diabetes_model.joblib') | |
# Save accuracy | |
with open("metrics.json", "w") as f: | |
json.dump({"accuracy": accuracy * 100}, f) | |
print(f"Model Accuracy: {accuracy * 100}%") | |