File size: 1,826 Bytes
33cd166
4a6e5b7
1b1d41a
 
0869e34
33cd166
4a6e5b7
 
 
 
33cd166
 
 
 
 
4a6e5b7
 
33cd166
4a6e5b7
8337ae8
4a6e5b7
 
 
 
33cd166
 
 
 
 
4a6e5b7
 
33cd166
 
 
4a6e5b7
33cd166
 
 
4a6e5b7
 
 
33cd166
 
 
 
 
4c729c6
2b2878e
 
33cd166
 
 
 
 
 
 
 
 
4a6e5b7
33cd166
 
 
4a6e5b7
33cd166
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import yfinance as yf
from prophet import Prophet
from prophet.plot import plot_plotly
from plotly import graph_objs as go
from datetime import date

START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")

st.title('Stock Forecast App')
stocks = ('GOOG', 'AAPL', 'MSFT', 'GME')
selected_stock = st.selectbox('Select a stock price for prediction', stocks)
n_years = st.slider('Years of prediction', 1, 4)
periods = n_years * 365


@st.cache_data  # Use st.cache_data instead of st.cache
def load_data(ticker):
    data = yf.download(ticker, START, TODAY, multi_level_index=False)
    data.reset_index(inplace=True)
    return data


data_load_state = st.text('Loading data...')
data = load_data(selected_stock)
data_load_state.text('Loading data... done!')

st.subheader('Raw data')
st.write(data.tail())


# Plot raw data
def plot_raw_data():
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open"))
    fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close"))
    fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True)
    st.plotly_chart(fig)


plot_raw_data()

# Predict forecast with Prophet.
df_train = data[['Date', 'Close']]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
st.write(df_train.columns)
st.write(df_train.head())  # Check the first few rows of the DataFrame


m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods=periods)
forecast = m.predict(future)

# Show and plot forecast
st.subheader('Forecast data')
st.write(forecast.tail())

st.subheader('Forecast plot for {} years'.format(n_years))
fig1 = plot_plotly(m, forecast)
st.plotly_chart(fig1)

st.write("Forecast components")
fig2 = m.plot_components(forecast)
st.write(fig2)