File size: 1,672 Bytes
a9a663b
 
 
 
 
 
 
 
 
dfae955
c54a77d
a9a663b
c54a77d
 
a9a663b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65e8bf8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import re
import transformers
from PIL import Image
from transformers import DonutProcessor, VisionEncoderDecoderModel
import torch
import random
import numpy as np
import gradio as gr

access_token = ""

transformers.logging.disable_default_handler()
processor = DonutProcessor.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token)
model = VisionEncoderDecoderModel.from_pretrained("daquarti/donut-base-sroie", use_auth_token=access_token)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

def load_image (f):
  with Image.open(f) as img:
    a = img.load()
    return img.convert('RGB')

def pred (a):
  #imagen_path = imagen
  #a = load_image (imagen_path)
  pixel_values = processor(a, return_tensors="pt").pixel_values
  task_prompt = "<s>"
  decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

  outputs = model.generate(
          pixel_values.to(device),
          decoder_input_ids=decoder_input_ids.to(device),
          max_length=model.decoder.config.max_position_embeddings,
          early_stopping=True,
          pad_token_id=processor.tokenizer.pad_token_id,
          eos_token_id=processor.tokenizer.eos_token_id,
          use_cache=True,
          num_beams=1,
          bad_words_ids=[[processor.tokenizer.unk_token_id]],
          return_dict_in_generate=True,
      )
  prediction = processor.batch_decode(outputs.sequences)[0]
  prediction = processor.token2json(prediction)
  return str (prediction)

examples = ['1.jpg', '2.jpg']
demo = gr.Interface(fn=pred, inputs="image", outputs= "text", examples= examples)


demo.launch(share= False)