Spaces:
Runtime error
Runtime error
File size: 6,874 Bytes
4858ba5 2a1d061 28623de 9a42f0f 2a1d061 4858ba5 2a1d061 4858ba5 2a1d061 98c19b6 4858ba5 9a42f0f 476f578 9a42f0f 476f578 9a42f0f 476f578 9a42f0f c74f0d5 476f578 c74f0d5 476f578 8f5871e c74f0d5 476f578 9a42f0f 476f578 9a42f0f 28623de 9a42f0f fb83515 9a42f0f fb83515 9a42f0f 98c19b6 9a42f0f e44c00b 4858ba5 28623de 9a42f0f ca86d9c 28623de 4858ba5 c74f0d5 4858ba5 9a42f0f 28623de c74f0d5 bf6bb3c 4858ba5 9a42f0f 4858ba5 2a1d061 4858ba5 c74f0d5 4858ba5 b2bfa4a 4858ba5 b2bfa4a 4858ba5 9a42f0f 4858ba5 9a42f0f 4858ba5 9a42f0f c74f0d5 4858ba5 c74f0d5 2a1d061 4858ba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import duckdb
import gradio as gr
import matplotlib.pyplot as plt
from transformers import HfEngine, ReactCodeAgent
from transformers.agents import Tool
# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')
print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
models = ["meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
for model in models:
llm_engine = HfEngine(model=model)
model_status = llm_engine.client.get_model_status()
if model_status.loaded:
break
def get_schemas():
schemas = conn.execute("""
SELECT DISTINCT schema_name
FROM information_schema.schemata
WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
""").fetchall()
return [item[0] for item in schemas]
# Get Tables
def get_tables(schema_name):
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
return [table[0] for table in tables]
# Update Tables
def update_tables(schema_name):
tables = get_tables(schema_name)
return gr.update(choices=tables)
# Get Schema
def get_table_schema(table):
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
ddl_create = result.iloc[0,0]
parent_database = result.iloc[0,1]
schema_name = result.iloc[0,2]
full_path = f"{parent_database}.{schema_name}.{table}"
if schema_name != "main":
old_path = f"{schema_name}.{table}"
else:
old_path = table
ddl_create = ddl_create.replace(old_path, full_path)
return ddl_create, full_path
def get_visualization(question, tool):
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True,
additional_authorized_imports=['matplotlib.pyplot',
'pandas', 'plotly.express',
'seaborn'], max_iterations=10)
fig = agent.run(
task=f'''
THINK STEP BY STEP
Here are the steps you should follow while writing code for Visualization:
1. Select the most appropriate chart type for data. Use bar charts for categorical comparisons, line charts for trends over time, scatter plots for relationships between variables, pie charts for proportions, histograms for distribution analysis, and box plots for visualizing data spread and outliers.
2. Ensure clear and appropriate labels, colors, and design elements, keeping visual elements legible and uncluttered.
3. Follow best practices, avoiding unnecessary visual distractions (chartjunk).
4. Ensure the code is error-free, with correct fields, transformations, and aesthetics.
5. Use descriptive and accurate x and y axis labels that reflect the data.
6. Ensure units of measurement are clearly indicated on axes (e.g., %, $, cm).
7. Ensure that categorical data is plotted on one axis and numerical data on the other, with appropriate labels that clearly represent the data being visualized.
8. When plotting categorical data, arrange categories in a meaningful order (e.g., by size, time, or frequency) rather than randomly.
9. Ensure that the categorical data are plotted on the x-axis, and the frequencies (numerical data) are plotted on the y-axis.
10. Use seaborn
11. In the end you have to return a dict which contain final fig as fig key, Generated SQL as sql key, Data as a dataframe with data key using the `final_answer` tool.
Here is the task:
task: {question}
''',
)
return fig
class SQLExecutorTool(Tool):
name = "sql_engine"
inputs = {
"query": {
"type": "text",
"description": f"The query to perform. This should be correct DuckDB SQL.",
}
}
output_type = "pandas.core.frame.DataFrame"
def forward(self, query: str) -> str:
output_df = conn.sql(query).df()
return output_df
tool = SQLExecutorTool()
def main(table, text_query):
# Empty Fig
fig, ax = plt.subplots()
ax.set_axis_off()
schema, _ = get_table_schema(table)
tool.description = f"""Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result.
The table schema is as follows: \n{schema}"""
try:
output = get_visualization(question=text_query, tool=tool)
fig = output.get('fig', None)
generated_sql = output.get('sql', None)
data = output.get('data', None)
except Exception as e:
gr.Warning(f"β Unable to generate the visualization. {e}")
return fig, generated_sql, data
custom_css = """
.gradio-container {
background-color: #f0f4f8;
}
.logo {
max-width: 200px;
margin: 20px auto;
display: block;
}
.gr-button {
background-color: #4a90e2 !important;
}
.gr-button:hover {
background-color: #3a7bc8 !important;
}
"""
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
# gr.Image("logo.png", label=None, show_label=False, container=False, height=100)
gr.Markdown("""
<div style='text-align: center;'>
<strong style='font-size: 36px;'>DataViz Agent</strong>
<br>
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
with gr.Column(scale=2):
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...")
with gr.Row():
with gr.Column(scale=7):
pass
with gr.Column(scale=1):
generate_query_button = gr.Button("Run Query", variant="primary")
with gr.Tabs():
with gr.Tab("Plot"):
result_plot = gr.Plot()
with gr.Tab("SQL"):
generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False,
autoscroll=False)
with gr.Tab("Data"):
data = gr.Dataframe(label="Data", interactive=False)
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown)
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data])
if __name__ == "__main__":
demo.launch(debug=True) |