Spaces:
Runtime error
Runtime error
import os | |
import duckdb | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
from transformers import HfEngine, ReactCodeAgent | |
from transformers.agents import Tool | |
from langsmith import traceable | |
# Height of the Tabs Text Area | |
TAB_LINES = 8 | |
# Load Token | |
md_token = os.getenv('MD_TOKEN') | |
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN') | |
print('Connecting to DB...') | |
# Connect to DB | |
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True) | |
models = ["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3-70B-Instruct", | |
"meta-llama/Llama-3.1-70B-Instruct"] | |
model_loaded = False | |
for model in models: | |
try: | |
llm_engine = HfEngine(model=model) | |
info = llm_engine.client.get_endpoint_info() | |
model_loaded = True | |
break | |
except Exception as e: | |
print(f"Error for model {model}: {e}") | |
continue | |
if not model_loaded: | |
gr.Warning(f"β None of the model form {models} are available. {e}") | |
def get_schemas(): | |
schemas = conn.execute(""" | |
SELECT DISTINCT schema_name | |
FROM information_schema.schemata | |
WHERE schema_name NOT IN ('information_schema', 'pg_catalog') | |
""").fetchall() | |
return [item[0] for item in schemas] | |
# Get Tables | |
def get_tables(schema_name): | |
tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall() | |
return [table[0] for table in tables] | |
# Update Tables | |
def update_tables(schema_name): | |
tables = get_tables(schema_name) | |
return gr.update(choices=tables) | |
# Get Schema | |
def get_table_schema(table): | |
result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df() | |
ddl_create = result.iloc[0,0] | |
parent_database = result.iloc[0,1] | |
schema_name = result.iloc[0,2] | |
full_path = f"{parent_database}.{schema_name}.{table}" | |
if schema_name != "main": | |
old_path = f"{schema_name}.{table}" | |
else: | |
old_path = table | |
ddl_create = ddl_create.replace(old_path, full_path) | |
return ddl_create, full_path | |
def get_visualization(question, tool, schema, table_name): | |
agent = ReactCodeAgent(tools=[tool], llm_engine=llm_engine, add_base_tools=True, | |
additional_authorized_imports=['matplotlib.pyplot', | |
'pandas', 'plotly.express', | |
'seaborn'], max_iterations=10) | |
results = agent.run( | |
task= f''' | |
Here are the steps you should follow while writing code for Visualization: | |
1. You have access to the database with the `sql_engine` tool, which allows you to run DuckDB SQL queries and return results as a df. | |
2. Query the database using `sql_engine`, print the first 5 rows to inspect the data. | |
3. Select the most appropriate chart type for the data: | |
- Use bar charts for categorical comparisons, line charts for trends over time, scatter plots for relationships between variables, pie charts for proportions, histograms for distribution, and box plots for data spread and outliers. | |
4. Analyze the data and choose the best visualization type to answer the query. | |
5. Always include a plot in your answer. | |
6. Use Seaborn for the plots. | |
7. In the end, return a dictionary containing the final figure (`fig` key), the generated SQL (`sql` key), and the data as a dataframe (`data` key) using the `final_answer` tool, e.g. `final_answer(answer={{"fig": 'fig.png', "sql": sql, "data": data}})`. | |
Example: | |
```python | |
# Input query | |
query_description = 'Average tip amount based on the ride time length in minutes.' | |
# SQL Query to get ride time length and average tip amount | |
query = """ | |
SELECT | |
EXTRACT(EPOCH FROM (tpep_dropoff_datetime - tpep_pickup_datetime)) / 60 AS ride_time_length, | |
AVG(tip_amount) AS avg_tip_amount | |
FROM | |
sample_data.nyc.taxi | |
GROUP BY | |
EXTRACT(EPOCH FROM (tpep_dropoff_datetime - tpep_pickup_datetime)) / 60 | |
""" | |
# Execute the query using the sql_engine tool | |
df = sql_engine(query=query) | |
# Print the result to observe the data | |
print(df) | |
# Create a line plot using seaborn | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
plt.figure(figsize=(10,6)) | |
sns.lineplot(x="ride_time_length", y="avg_tip_amount", data=df) | |
# Set the title and labels | |
plt.title("Average Tip Amount vs Ride Time Length") | |
plt.xlabel("Ride Time Length (minutes)") | |
plt.ylabel("Average Tip Amount") | |
# Print the plot to observe the results | |
print("Plot created") | |
# Since we are required to return a fig, sql, and data, let's store the plot in a variable | |
fig = plt.gcf() | |
# Store the query in a variable | |
sql = query | |
# Store the dataframe in a variable | |
data = df | |
# Return the final answer | |
final_answer(answer={{"fig": fig, "sql": sql, "data": data}}) | |
``` | |
Here is the query you should generate a plot for: '{question}'. | |
Here is the schema: '{schema}' and here is the table name: '{table_name} | |
''' | |
) | |
return results | |
def query_response(input_prompt, generated_sql): | |
return generated_sql | |
class SQLExecutorTool(Tool): | |
name = "sql_engine" | |
inputs = { | |
"query": { | |
"type": "text", | |
"description": f"The query to perform. This should be correct DuckDB SQL.", | |
} | |
} | |
description = """Allows you to perform SQL queries on the table. Returns a pandas dataframe representation of the result.""" | |
output_type = "pandas.core.frame.DataFrame" | |
def forward(self, query: str) -> str: | |
output_df = conn.sql(query).df() | |
return output_df | |
tool = SQLExecutorTool() | |
def main(table, text_query): | |
# Empty Fig | |
fig, ax = plt.subplots() | |
ax.set_axis_off() | |
schema, table_name = get_table_schema(table) | |
try: | |
output = get_visualization(question=text_query, tool=tool, schema=schema, table_name=table_name) | |
fig = output.get('fig', None) | |
generated_sql = output.get('sql', None) | |
data = output.get('data', None) | |
input_prompt = text_query + '\n' + table_name + '\n' + schema | |
_ = query_response(input_prompt, generated_sql) | |
except Exception as e: | |
gr.Warning(f"β Unable to generate the visualization. {e}") | |
return fig, generated_sql, data | |
custom_css = """ | |
.gradio-container { | |
background-color: #f0f4f8; | |
} | |
.logo { | |
max-width: 200px; | |
margin: 20px auto; | |
display: block; | |
} | |
.gr-button { | |
background-color: #4a90e2 !important; | |
} | |
.gr-button:hover { | |
background-color: #3a7bc8 !important; | |
} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo: | |
gr.Image("logo.png", label=None, show_label=False, container=False, height=100) | |
gr.Markdown(""" | |
<div style='text-align: center;'> | |
<strong style='font-size: 36px;'>DataViz Agent</strong> | |
<br> | |
<span style='font-size: 20px;'>Visualize SQL queries based on a given text for the dataset.</span> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True) | |
tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None) | |
with gr.Column(scale=2): | |
query_input = gr.Textbox(lines=3, label="Text Query", placeholder="Enter your text query here...") | |
with gr.Row(): | |
with gr.Column(scale=7): | |
pass | |
with gr.Column(scale=1): | |
generate_query_button = gr.Button("Run Query", variant="primary") | |
with gr.Tabs(): | |
with gr.Tab("Plot"): | |
result_plot = gr.Plot() | |
with gr.Tab("SQL"): | |
generated_sql = gr.Textbox(lines=TAB_LINES, label="Generated SQL", value="", interactive=False, | |
autoscroll=False) | |
with gr.Tab("Data"): | |
data = gr.Dataframe(label="Data", interactive=False) | |
schema_dropdown.change(update_tables, inputs=schema_dropdown, outputs=tables_dropdown) | |
generate_query_button.click(main, inputs=[tables_dropdown, query_input], outputs=[result_plot, generated_sql, data]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |