File size: 8,471 Bytes
a8d09b2
 
 
fcfc654
a8d09b2
 
 
 
fcfc654
a8d09b2
fcfc654
 
a8d09b2
 
 
 
 
fcfc654
 
a8d09b2
 
 
 
 
 
fcfc654
 
a8d09b2
 
 
 
fcfc654
a8d09b2
 
 
 
 
 
 
 
fcfc654
a8d09b2
 
 
 
fcfc654
a8d09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0ca90
 
a8d09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d43019d
a8d09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcfc654
a8d09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8856e7f
a8d09b2
 
8856e7f
a8d09b2
8856e7f
a8d09b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcfc654
 
 
a8d09b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import json
import duckdb
import gradio as gr
import pandas as pd
import pandera as pa
from pandera import Column
import ydata_profiling as pp
from huggingface_hub import InferenceClient
from prompt import PROMPT_PANDERA


# Height of the Tabs Text Area
TAB_LINES = 8
# Load Token
md_token = os.getenv('MD_TOKEN')
os.environ['HF_TOKEN'] = os.getenv('HF_TOKEN')


INPUT_PROMPT = '''
Here is the frist few samples of data:
<Sample Data>
{data}
</Sample Data<>
'''


print('Connecting to DB...')
# Connect to DB
conn = duckdb.connect(f"md:my_db?motherduck_token={md_token}", read_only=True)
client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct")

# Get Databases
def get_schemas():
    schemas = conn.execute("""
    SELECT DISTINCT schema_name
    FROM information_schema.schemata
    WHERE schema_name NOT IN ('information_schema', 'pg_catalog')
    """).fetchall()
    return [item[0] for item in schemas]

# Get Tables
def get_tables_names(schema_name):
    tables = conn.execute(f"SELECT table_name FROM information_schema.tables WHERE table_schema = '{schema_name}'").fetchall()
    return [table[0] for table in tables]

# Update Tables
def update_table_names(schema_name):
    tables = get_tables_names(schema_name)
    return gr.update(choices=tables)

def get_data_df(schema):
    print('Getting Dataframe from the Database')
    return conn.sql(f"SELECT * FROM {schema} LIMIT 1000").df()

def run_llm(df):
  messages=[
        {"role": "system", "content": PROMPT_PANDERA},
        {"role": "user", "content": INPUT_PROMPT.format(data=df.head().to_json(orient='records'))},
    ]
  try:
    response = client.chat_completion(messages, max_tokens=1024)
    print(response.choices[0].message.content)
    tests = json.loads(response.choices[0].message.content)
  except Exception as e:
      return e
  return tests

# Get Schema
def get_table_schema(table):
    result = conn.sql(f"SELECT sql, database_name, schema_name FROM duckdb_tables() where table_name ='{table}';").df()
    ddl_create = result.iloc[0,0]
    parent_database = result.iloc[0,1]
    schema_name = result.iloc[0,2]
    full_path = f"{parent_database}.{schema_name}.{table}"
    if schema_name != "main":
        old_path = f"{schema_name}.{table}"
    else:
        old_path = table
    ddl_create = ddl_create.replace(old_path, full_path)
    return full_path

def describe(df):
    numerical_info = df.select_dtypes(include=['number']).describe().T.reset_index()
    numerical_info.rename(columns={'index': 'column'}, inplace=True)
    
    categorical_info = df.select_dtypes(include=['object']).describe().T.reset_index()
    categorical_info.rename(columns={'index': 'column'}, inplace=True)

    return numerical_info, categorical_info

def validate_pandera(tests, df):
    validation_results = []

    for test in tests:
        column_name = test['column_name']
        try:
            rule = eval(test['pandera_rule'])  
            validated_column = rule(df[[column_name]])  
            validation_results.append({
            "Columns": column_name,
            "Result": "✅ Pass"
            })
        except Exception as e:
            validation_results.append({
            "Columns": column_name,
            "Result": f"❌ Fail - {str(e)}"
            })
    return pd.DataFrame(validation_results)

def statistics(df):
    profile = pp.ProfileReport(df)
    report_dict = profile.get_description()
    description, alerts = report_dict.table, report_dict.alerts
    # Statistics
    mapping = {
        'n': 'Number of observations',
        'n_var': 'Number of variables',
        'n_cells_missing': 'Number of cells missing',
        'n_vars_with_missing': 'Number of columns with missing data',
        'n_vars_all_missing': 'Columns with all missing data',
        'p_cells_missing': 'Missing cells (%)',
        'n_duplicates': 'Duplicated rows',
        'p_duplicates': 'Duplicated rows (%)',
    }

    updated_data = {mapping.get(k, k): v for k, v in description.items() if k != 'types'}
    # Add flattened types information
    if 'Text' in description.get('types', {}):
            updated_data['Number of text columns'] = description['types']['Text']
    if 'Categorical' in description.get('types', {}):
        updated_data['Number of categorical columns'] = description['types']['Categorical']
    if 'Numeric' in description.get('types', {}):
        updated_data['Number of numeric columns'] = description['types']['Numeric']
    if 'DateTime' in description.get('types', {}):
        updated_data['Number of datetime columns'] = description['types']['DateTime']

    df_statistics = pd.DataFrame(list(updated_data.items()), columns=['Statistic Description', 'Value'])
    df_statistics['Value'] = df_statistics['Value'].astype(int)

    # Alerts
    alerts_list = [(str(alert).replace('[', '').replace(']', ''), alert.alert_type_name) for alert in alerts]
    df_alerts = pd.DataFrame(alerts_list, columns=['Data Quality Issue', 'Category'])

    return df_statistics, df_alerts
# Main Function
def main(table):
    schema = get_table_schema(table)
    df = get_data_df(schema)
    df_statistics, df_alerts = statistics(df)
    describe_cat, describe_num = describe(df)

    tests = run_llm(df)
    print(tests)
    if isinstance(tests, Exception):
        tests = pd.DataFrame([{"error": f"❌ Unable to generate tests. {tests}"}])
        return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests, pd.DataFrame([])

    tests_df = pd.DataFrame(tests)
    tests_df.rename(columns={tests_df.columns[0]: 'Column', tests_df.columns[1]: 'Rule Name', tests_df.columns[2]: 'Rules' }, inplace=True)
    pandera_results = validate_pandera(tests, df)
    
    return df.head(10), df_statistics, df_alerts, describe_cat, describe_num, tests_df, pandera_results

# Custom CSS styling
custom_css = """
.gradio-container {
    background-color: #f0f4f8;
}
.logo {
    max-width: 200px;
    margin: 20px auto;
    display: block;
}
.gr-button {
    background-color: #4a90e2 !important;
}
.gr-button:hover {
    background-color: #3a7bc8 !important;
}
"""

with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="indigo"), css=custom_css) as demo:
    gr.Image("logo.png", label=None, show_label=False, container=False, height=100)

    gr.Markdown("""
    <div style='text-align: center;'>
    <strong style='font-size: 36px;'>Dataset Test Workflow</strong>
    <br>
    <span style='font-size: 20px;'>Implement and Automate Data Validation Processes.</span>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            schema_dropdown = gr.Dropdown(choices=get_schemas(), label="Select Schema", interactive=True)
            tables_dropdown = gr.Dropdown(choices=[], label="Available Tables", value=None)
            with gr.Row():
                generate_query_button = gr.Button("Validate Data", variant="primary")

        with gr.Column(scale=2):
            with gr.Tabs():

                with gr.Tab("Description"):
                    with gr.Row():
                        with gr.Column():
                            data_description = gr.DataFrame(label="Data Description", value=[], interactive=False)
                    with gr.Row():
                        with gr.Column():
                            describe_cat = gr.DataFrame(label="Categorical Information", value=[], interactive=False)
                        with gr.Column():    
                            describe_num = gr.DataFrame(label="Numerical Information", value=[], interactive=False)

                with gr.Tab("Alerts"):
                    data_alerts = gr.DataFrame(label="Alerts", value=[], interactive=False)

                with gr.Tab("Rules & Validations"):
                    tests_output = gr.DataFrame(label="Validation Rules", value=[], interactive=False)
                    test_result_output = gr.DataFrame(label="Validation Result", value=[], interactive=False)
                
                with gr.Tab("Data"):
                    result_output = gr.DataFrame(label="Dataframe (10 Rows)", value=[], interactive=False)

        schema_dropdown.change(update_table_names, inputs=schema_dropdown, outputs=tables_dropdown)
        generate_query_button.click(main, inputs=[tables_dropdown], outputs=[result_output, data_description, data_alerts, describe_cat, describe_num, tests_output, test_result_output])



if __name__ == "__main__":
    demo.launch(debug=True)