Spaces:
Runtime error
Runtime error
File size: 6,230 Bytes
c4fe3e2 a865cdc 7e36f16 c4fe3e2 7e36f16 c4fe3e2 82f6211 7e36f16 c4fe3e2 7e36f16 c4fe3e2 82f6211 7e36f16 c4fe3e2 7e36f16 c4fe3e2 7e36f16 a865cdc 7e36f16 d12dd0d 3852cad d12dd0d c4fe3e2 3852cad c4fe3e2 3852cad cc56408 3852cad c4fe3e2 cc56408 c4fe3e2 3852cad c4fe3e2 3852cad c4fe3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
from huggingface_hub import list_models, list_spaces
from pathlib import Path
from toolz import concat
from datasets import Dataset
import polars as pl
from datetime import date
from datasets import load_dataset
import plotly.express as px
import os
from typing import Optional, Set, Tuple
from functools import lru_cache
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN
def yield_models(exclude_users: Optional[Set[str]] = None):
"""Yields models from the hub optionally excluding users."""
for model in iter(list_models(full=True)):
if (
exclude_users is not None
and model.author is not None
and model.author in exclude_users
):
continue
yield "model", model
def yield_spaces(exclude_users: Optional[Set[str]] = None):
for space in iter(list_spaces(full=True)):
if exclude_users is not None and space.author and space.author in exclude_users:
continue
yield "space", space
def yield_notebooks_counts(exclude_users: Optional[Set[str]] = None):
for repo_type, repo in concat(
[
yield_models(exclude_users=exclude_users),
yield_spaces(exclude_users=exclude_users),
]
):
files = (f.rfilename for f in repo.siblings)
if jupyter_notebook := [f for f in files if Path(f).suffix == ".ipynb"]:
yield {
"date": date.today(),
"repo_type": repo_type,
"repo_id": repo.id,
"repo_notebook_count": len(jupyter_notebook),
}
def yield_notebooks(exclude_users: Optional[Set[str]] = None):
for repo_type, repo in concat(
[
yield_models(exclude_users=exclude_users),
yield_spaces(exclude_users=exclude_users),
]
):
files = (f.rfilename for f in repo.siblings)
if jupyter_notebook := [f for f in files if Path(f).suffix == ".ipynb"]:
yield {
"repo_type": repo_type,
"repo_id": repo.id,
"repo_notebook_count": len(jupyter_notebook),
"jupyter_notebooks": jupyter_notebook,
"likes": repo.likes,
}
@lru_cache
def _get_top_liked_repos_with_notebooks(exclude_users: Optional[Tuple[str]] = None):
df = pl.LazyFrame(yield_notebooks(exclude_users=exclude_users))
df = df.sort("likes", descending=True).collect()
return df
def get_top_liked_repos_with_notebooks(exclude_users: Optional[Set[str]] = None):
exclude_users = tuple(exclude_users) if exclude_users else None
return _get_top_liked_repos_with_notebooks(exclude_users)
def get_top_k_notebooks_by_repo_type(type: str = "space", k: int = 50):
df = get_top_liked_repos_with_notebooks({"gradio"})
return df.filter(pl.col("repo_type") == type).head(k).to_pandas()
def raw_current_notebook_dataframe():
df = pl.DataFrame(
yield_notebooks_counts(exclude_users={"gradio", "gradio-pr-deploys"})
)
return df.to_pandas()
def update_stats():
df = pl.LazyFrame(
yield_notebooks_counts(exclude_users={"gradio", "gradio-pr-deploys"})
)
df = (
df.with_columns(pl.col("repo_id").str.split_exact("/", 1))
.unnest("repo_id")
.rename({"field_0": "user", "field_1": "repo_id"})
)
previous_raw_df = pl.DataFrame(
load_dataset("davanstrien/notebooks_on_the_hub_raw", split="train",verification_mode='no_checks').data.table
)
final_raw_df = pl.concat([previous_raw_df, df.collect()]).unique()
Dataset(final_raw_df.to_arrow()).push_to_hub(
"davanstrien/notebooks_on_the_hub_raw", token=HF_TOKEN
)
by_user_count = (
df.groupby("user")
.agg(pl.col("repo_notebook_count").sum())
.sort("repo_notebook_count", descending=True)
.collect()
)
by_user_count.mean().select(
pl.col("repo_notebook_count").alias("mean notebooks per user")
)
ds = Dataset(by_user_count.to_arrow())
ds.push_to_hub("davanstrien/notebooks_by_user", token=HF_TOKEN)
grouped = df.groupby("repo_type").agg(pl.col("repo_notebook_count").sum())
final_df = grouped.with_columns(pl.lit(date.today()).alias("date")).collect()
previous_df = pl.DataFrame(
load_dataset("davanstrien/notebooks_by_repo_type", split="train",verification_mode='no_checks').data.table
)
final_df = pl.concat([previous_df, final_df]).unique()
spaces = final_df.filter(pl.col("repo_type") == "space").unique(
subset=["date"], keep="last"
)
models = final_df.filter(pl.col("repo_type") == "model").unique(
subset=["date"], keep="last"
)
final_df = pl.concat([spaces, models]).unique()
Dataset(final_df.to_arrow()).push_to_hub(
"davanstrien/notebooks_by_repo_type", token=HF_TOKEN
)
final_df = final_df.sort("date")
pandas_df = final_df.to_pandas()
# final_df.to_pandas().set_index("date", drop=True).sort_index()
return pandas_df, final_df, final_raw_df
with gr.Blocks() as demo:
with gr.Tab("Notebooks on the Hub stats"):
gr.Markdown("# Notebooks on the Hub (updated daily)")
pandas_df, final_df, final_raw_df = update_stats()
gr.Markdown("## Notebooks on the Hub over time")
gr.Plot(px.line(pandas_df, x="date", y="repo_notebook_count", color="repo_type"))
gr.Markdown("## Notebooks on the Hub (total by date)")
gr.DataFrame(
final_df.select(pl.col(["date", "repo_notebook_count"]))
.groupby("date")
.sum()
.sort("date")
.to_pandas()
)
gr.Markdown("## Top Repos by likes with notebooks")
gr.Markdown("#### Top 10 Spaces")
gr.DataFrame(get_top_k_notebooks_by_repo_type("space", 10)[["repo_id", "likes"]])
gr.Markdown("#### Top 10 Models")
gr.DataFrame(get_top_k_notebooks_by_repo_type("model", 10)[["repo_id", "likes"]])
# repo_type.update(get_top_k_notebooks_by_repo_type, [repo_type, k],[df])
with gr.Tab("raw data"):
gr.Markdown("## Notebooks on the Hub raw data")
gr.DataFrame(final_raw_df.to_pandas())
demo.launch(debug=True)
|