|
import gradio as gr
|
|
import numpy as np
|
|
from tensorflow.keras.models import load_model
|
|
from huggingface_hub import hf_hub_download
|
|
import pickle
|
|
from PIL import Image
|
|
|
|
|
|
repo_id = "davebraga/wrdbTI6"
|
|
model_path = hf_hub_download(repo_id, "trained_model.keras")
|
|
category_encoder_path = hf_hub_download(repo_id, "category_encoder.pkl")
|
|
color_encoder_path = hf_hub_download(repo_id, "color_encoder.pkl")
|
|
|
|
|
|
model = load_model(model_path)
|
|
with open(category_encoder_path, "rb") as f:
|
|
category_encoder = pickle.load(f)
|
|
with open(color_encoder_path, "rb") as f:
|
|
color_encoder = pickle.load(f)
|
|
|
|
|
|
def predict(image):
|
|
image = image.resize((160, 160))
|
|
image_array = np.array(image) / 255.0
|
|
image_array = np.expand_dims(image_array, axis=0)
|
|
|
|
category_pred, color_pred = model.predict(image_array)
|
|
category = category_encoder.inverse_transform([np.argmax(category_pred)])[0]
|
|
color = color_encoder.inverse_transform([np.argmax(color_pred)])[0]
|
|
|
|
return f"Categoria: {category}", f"Cor: {color}"
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict,
|
|
inputs=gr.Image(type="pil"),
|
|
outputs=["text", "text"],
|
|
title="Classificador de Categoria e Cor",
|
|
description="Faça upload de uma imagem de uma peça de roupa para prever a categoria e a cor."
|
|
)
|
|
|
|
iface.launch()
|
|
|