File size: 2,508 Bytes
e763e8a
 
 
0d179e3
 
11a9727
 
 
 
 
e763e8a
 
 
 
 
 
 
 
 
55c7d01
4e308cb
e763e8a
0d179e3
d14928c
fed1aac
 
 
 
 
d41ae8b
 
fed1aac
 
 
 
 
 
 
bd92b29
fed1aac
44da4e7
1c2b3eb
93d3a3d
 
8b063ca
 
3f4c25c
93d3a3d
 
7bfe84c
9538882
 
1c2b3eb
bd0797d
01e50b7
bd0797d
 
f29db00
1c2b3eb
bd0797d
1c2b3eb
bd0797d
 
 
9098a3a
 
 
 
1c2b3eb
b47e796
a148c7b
4e308cb
4e8b18f
6a868af
 
50d6f71
d933daa
b47e796
b6c9ea3
0d179e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from omegaconf import OmegaConf
from query import VectaraQuery
import os
import gradio as gr

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

corpus_ids = str(os.environ['corpus_ids']).split(',')
cfg = OmegaConf.create({
    'customer_id': str(os.environ['customer_id']),
    'corpus_ids': corpus_ids,
    'api_key': str(os.environ['api_key']),
    'title': os.environ['title'],
    'description': os.environ['description'],
    'source_data_desc': os.environ['source_data_desc'],
    'streaming': isTrue(os.environ.get('streaming', False)),
    'prompt_name': os.environ.get('prompt_name', None),
    'examples': os.environ.get('examples', None)
})

vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)

def respond(message, history):
    if cfg.streaming:
        # Call stream response and stream output
        stream = vq.submit_query_streaming(message)
        
        
        outputs = ""
        for output in stream:
            outputs += output
            yield outputs
    else:
        # Call non-stream response and return message output
        response = vq.submit_query(message)
        yield response


cfg.description = f'''
                <table>
                  <tr>
                    <td style="width: 33%; vertical-align: bottom;"> <img src="https://github.com/david-oplatka/chatbot-streamlit/blob/main/Vectara-logo.png?raw=true"> </td>
                    <td style="width: 34%; vertical-align: middle;"> <h1>{cfg.title}</h1> </td>
                    <td style="width: 33%; vertical-align: bottom; text-align: left"> This demo uses Retrieval Augmented Generation from <a href="https://vectara.com/">Vectara</a><br>to ask questions about {cfg.source_data_desc}. </td>
                  </tr>
                </table>
                <center> <h2>{cfg.description}</h2></center>
                '''

css = """
table {
  border: none;
  width: 100%;
  table-layout: fixed;
  border-collapse: separate;
}
td {
  border: none;
  text-align: center;
}
img {
  width: 50%;
}
h1 {
  font-size: 3em; /* Adjust the size as needed */
}
"""

if cfg.examples:
    app_examples = [example.strip() for example in cfg.examples.split(",")]
else:
    app_examples = None

demo = gr.ChatInterface(respond, description = cfg.description, css = css,
                        chatbot = gr.Chatbot(value = [[None, "How may I help you?"]]), examples = app_examples)


if __name__ == "__main__":
    demo.launch()