Spaces:
Sleeping
Sleeping
File size: 8,711 Bytes
e763e8a 0d179e3 11a9727 156af69 e763e8a 156af69 e763e8a 55c7d01 4e308cb e763e8a 0d179e3 156af69 fed1aac 9c59395 fed1aac 9c59395 fed1aac 156af69 16de684 88d9519 9c59395 9538882 5df36a8 9c59395 b47e796 a148c7b 4e308cb 4e8b18f 6a868af 50d6f71 9c59395 16de684 9c59395 0d179e3 ea256e3 9c59395 ea256e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from omegaconf import OmegaConf
from query import VectaraQuery
import os
import gradio as gr
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None)
})
vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
def respond(message, history):
if cfg.streaming:
# Call stream response and stream output
stream = vq.submit_query_streaming(message)
outputs = ""
for output in stream:
outputs += output
yield outputs
else:
# Call non-stream response and return message output
response = vq.submit_query(message)
yield response
def vote(data: gr.LikeData):
if data.liked:
print("Received Thumbs up")
else:
print("Received Thumbs down")
heading_html = f'''
<table>
<tr>
<td style="width: 80%; text-align: left; vertical-align: middle;"> <h1>Vectara AI Assistant: {cfg.title}</h1> </td>
<td style="width: 20%; text-align: right; vertical-align: middle;"> <img src="https://github.com/david-oplatka/chatbot-streamlit/blob/main/Vectara-logo.png?raw=true"> </td>
</tr>
<tr>
<td colspan="2" style="font-size: 16px;">This demo uses Retrieval Augmented Generation from <a href="https://vectara.com/">Vectara</a> to ask questions about {cfg.source_data_desc}.</td>
</tr>
</table>
'''
bot_css = """
table {
border: none;
width: 100%;
table-layout: fixed;
border-collapse: separate;
}
td {
vertical-align: middle;
border: none;
}
img {
width: 75%;
}
h1 {
font-size: 2em; /* Adjust the size as needed */
}
"""
if cfg.examples:
app_examples = [example.strip() for example in cfg.examples.split(",")]
else:
app_examples = None
with gr.Blocks() as demo:
chatbot = gr.Chatbot(value = [[None, "How may I help you?"]])
chatbot.like(vote, None, None)
gr.ChatInterface(respond, description = heading_html, css = bot_css,
chatbot = chatbot, examples = app_examples, cache_examples = False)
if __name__ == "__main__":
demo.launch()
# from omegaconf import OmegaConf
# from query import VectaraQuery
# import os
# import gradio as gr
# def isTrue(x) -> bool:
# if isinstance(x, bool):
# return x
# return x.strip().lower() == 'true'
# corpus_keys = str(os.environ['corpus_keys']).split(',')
# cfg = OmegaConf.create({
# 'corpus_keys': corpus_keys,
# 'api_key': str(os.environ['api_key']),
# 'title': os.environ['title'],
# 'source_data_desc': os.environ['source_data_desc'],
# 'streaming': isTrue(os.environ.get('streaming', False)),
# 'prompt_name': os.environ.get('prompt_name', None),
# 'examples': os.environ.get('examples', None)
# })
# vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
# def respond(message, history):
# if cfg.streaming:
# # Call stream response and stream output
# stream = vq.submit_query_streaming(message)
# for output in stream:
# yield output
# else:
# # Call non-stream response and return message output
# response = vq.submit_query(message)
# yield response
# def vote(data: gr.LikeData):
# if data.liked:
# print("Received Thumbs up")
# else:
# print("Received Thumbs down")
# heading_html = f'''
# <table>
# <tr>
# <td style="width: 80%; text-align: left; vertical-align: middle;">
# <h1>Vectara AI Assistant: {cfg.title}</h1>
# </td>
# <td style="width: 20%; text-align: right; vertical-align: middle;">
# <img src="https://github.com/david-oplatka/chatbot-streamlit/blob/main/Vectara-logo.png?raw=true">
# </td>
# </tr>
# <tr>
# <td colspan="2" style="font-size: 16px;">This demo uses Retrieval Augmented Generation from <a href="https://vectara.com/">Vectara</a> to ask questions about {cfg.source_data_desc}.</td>
# </tr>
# </table>
# '''
# bot_css = """
# table { border: none; width: 100%; table-layout: fixed; border-collapse: separate;}
# td { vertical-align: middle; border: none;}
# img { width: 75%;}
# h1 { font-size: 2em; /* Adjust the size as needed */}
# """
# if cfg.examples:
# app_examples = [example.strip() for example in cfg.examples.split(",")]
# else:
# app_examples = None
# with gr.Blocks(css=bot_css) as demo:
# gr.HTML(heading_html)
# chatbot = gr.Chatbot(value=[[None, "How may I help you?"]])
# msg = gr.Textbox(label="Message")
# clear = gr.Button("Clear")
# def user(message, history):
# return "", history + [[message, None]]
# def bot(history):
# message = history[-1][0]
# bot_message = respond(message, history)
# if cfg.streaming:
# full_response = ""
# for chunk in bot_message:
# full_response += chunk
# history[-1][1] = full_response
# yield history
# else:
# history[-1][1] = next(bot_message)
# yield history
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot, chatbot, chatbot, api_name="bot_response"
# )
# chatbot.like(vote, None, None)
# clear.click(lambda: None, None, chatbot, queue=False)
# if app_examples:
# gr.Examples(
# app_examples,
# inputs=msg,
# outputs=chatbot,
# fn=user,
# cache_examples=False
# )
# if __name__ == "__main__":
# demo.launch()
# from omegaconf import OmegaConf
# from query import VectaraQuery
# import os
# import gradio as gr
# def isTrue(x) -> bool:
# if isinstance(x, bool):
# return x
# return x.strip().lower() == 'true'
# corpus_keys = str(os.environ['corpus_keys']).split(',')
# cfg = OmegaConf.create({
# 'corpus_keys': corpus_keys,
# 'api_key': str(os.environ['api_key']),
# 'title': os.environ['title'],
# 'source_data_desc': os.environ['source_data_desc'],
# 'streaming': isTrue(os.environ.get('streaming', False)),
# 'prompt_name': os.environ.get('prompt_name', None),
# 'examples': os.environ.get('examples', None)
# })
# vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
# def respond(message, history):
# if cfg.streaming:
# # Call stream response and stream output
# stream = vq.submit_query_streaming(message)
# outputs = ""
# for output in stream:
# outputs += output
# yield outputs
# else:
# # Call non-stream response and return message output
# response = vq.submit_query(message)
# yield response
# heading_html = f'''
# <table>
# <tr>
# <td style="width: 80%; text-align: left; vertical-align: middle;"> <h1>Vectara AI Assistant: {cfg.title}</h1> </td>
# <td style="width: 20%; text-align: right; vertical-align: middle;"> <img src="https://github.com/david-oplatka/chatbot-streamlit/blob/main/Vectara-logo.png?raw=true"> </td>
# </tr>
# <tr>
# <td colspan="2" style="font-size: 16px;">This demo uses Retrieval Augmented Generation from <a href="https://vectara.com/">Vectara</a> to ask questions about {cfg.source_data_desc}.</td>
# </tr>
# </table>
# '''
# bot_css = """
# table {
# border: none;
# width: 100%;
# table-layout: fixed;
# border-collapse: separate;
# }
# td {
# vertical-align: middle;
# border: none;
# }
# img {
# width: 75%;
# }
# h1 {
# font-size: 2em; /* Adjust the size as needed */
# }
# """
# if cfg.examples:
# app_examples = [example.strip() for example in cfg.examples.split(",")]
# else:
# app_examples = None
# demo = gr.ChatInterface(respond, description = heading_html, css = bot_css,
# chatbot = gr.Chatbot(value = [[None, "How may I help you?"]]), examples = app_examples, cache_examples = False)
# if __name__ == "__main__":
# demo.launch() |