Spaces:
Build error
Build error
# import gc | |
# import gradio as gr | |
# import torch | |
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig | |
# # # quant_config = HqqConfig(nbits=8, group_size=64) | |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B" | |
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
# print("Loading tokenizer & model…") | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE) | |
# model =\ | |
# AutoModelForCausalLM\ | |
# .from_pretrained( | |
# MODEL_ID, | |
# torch_dtype=torch.float16, | |
# # device_map="cuda", | |
# # quantization_config=quant_config | |
# ).to(DEVICE) | |
# gc.collect() | |
######### | |
# import torch | |
# from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer | |
# from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig | |
# # quant_config = Float8WeightOnlyConfig() | |
# quant_config = Float8DynamicActivationFloat8WeightConfig() | |
# quantization_config = TorchAoConfig(quant_type=quant_config) | |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B" | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# model = AutoModelForCausalLM.from_pretrained( | |
# MODEL_ID, | |
# torch_dtype="auto", | |
# device_map="auto", | |
# quantization_config=quantization_config) | |
# gc.collect() | |
######### | |
# from unsloth import FastLanguageModel | |
# model, tokenizer = FastLanguageModel.from_pretrained( | |
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit", | |
# max_seq_length=128_000, | |
# load_in_4bit=True | |
# ) | |
######### | |
# import gc | |
# import gradio as gr | |
# from transformers import AutoTokenizer | |
# from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer | |
# from optimum.onnxruntime.configuration import AutoQuantizationConfig | |
# MODEL_NAME = "HuggingFaceTB/SmolLM3-3B" | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True) | |
# print("Creating quant config") | |
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True) | |
# print("Creating quant config successful") | |
# print("Creating quantizer") | |
# quantizer = ORTQuantizer.from_pretrained(model) | |
# print("Creating quantizer successful") | |
# # Step 4: Perform quantization saving output in a new directory | |
# quantized_model_dir = "./quantized_model" | |
# print("Starting quantization...") | |
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig) | |
# print("Quantization was successful. Garbage collecting...") | |
# del(quantizer) | |
# del(qconfig) | |
# del(model) | |
# Run garbage collection again to release memory from quantizer objects | |
# gc.collect() | |
# # Step 5: Load the quantized ONNX model for inference | |
# print("Loading quantized ONNX model for inference...") | |
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir) | |
# print("Loading model was succcessful. Garbage collecting.") | |
# Garbage collection again after final loading | |
# gc.collect() | |
######### | |
# print("Loading tokenizer & model…") | |
# import gradio as gr | |
# from transformers import AutoTokenizer | |
# from optimum.onnxruntime import ORTModelForCausalLM | |
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B" | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# model = ORTModelForCausalLM.from_pretrained(MODEL_ID, export=True, quantize=True) | |
######### | |
# ------------------------------------------------- | |
# Optional tool(s) | |
# ------------------------------------------------- | |
# TOOLS = [{ | |
# "name": "get_weather", | |
# "description": "Get the current weather in a given city", | |
# "parameters": { | |
# "type": "object", | |
# "properties": { | |
# "city": {"type": "string", "description": "City name"} | |
# }, | |
# "required": ["city"] | |
# } | |
# }] | |
# ------------------------------------------------- | |
# Helpers | |
# ------------------------------------------------- | |
# def build_messages(history, enable_thinking: bool): | |
# """Convert Gradio history to the chat template.""" | |
# messages = [] | |
# for h in history: | |
# messages.append({"role": h["role"], "content": h["content"]}) | |
# # Add system instruction for mode | |
# system_flag = "/think" if enable_thinking else "/no_think" | |
# messages.insert(0, {"role": "system", "content": system_flag}) | |
# return messages | |
# def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_penalty, max_new_tokens): | |
# """Generate a streaming response.""" | |
# messages = build_messages(history, enable_thinking) | |
# text = tokenizer.apply_chat_template( | |
# messages, | |
# tokenize=False, | |
# add_generation_prompt=True, | |
# # xml_tools=TOOLS | |
# ) | |
# inputs = tokenizer(text, return_tensors="pt") | |
# gc.collect() | |
# with torch.inference_mode(): | |
# streamer = model.generate( | |
# **inputs, | |
# max_new_tokens=max_new_tokens, | |
# do_sample=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# top_k=top_k, | |
# repetition_penalty=repetition_penalty, | |
# pad_token_id=tokenizer.eos_token_id, | |
# streamer=None # we'll yield manually | |
# ) | |
# gc.collect() | |
# output_ids = streamer[0][len(inputs.input_ids[0]):] | |
# response = tokenizer.decode(output_ids, skip_special_tokens=True) | |
# if isinstance(response, str): | |
# response = response.replace('<think>',"# <think>").replace('</think>',"</think>") | |
# elif isinstance(response,list): | |
# response = [paper.replace('<think>',"# <think>").replace('</think>',"</think>") for paper in response] | |
# else: | |
# raise ValueError("Tokenizer response seems malformed; Not a string, nor a list?!?!") | |
# # streaming char-by-char | |
# history.append({"role": "assistant", "content": ""}) | |
# for ch in response: | |
# history[-1]["content"] += ch | |
# yield history | |
# # ------------------------------------------------- | |
# # Blocks UI | |
# # ------------------------------------------------- | |
# with gr.Blocks(title="SmolLM3-3B Chat") as demo: | |
# gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)") | |
# with gr.Row(): | |
# enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True) | |
# temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature") | |
# top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p") | |
# top_k = gr.Slider(1,40,value=20,label="Top_k") | |
# repetition_penalty = gr.Slider(1.0,1.4,value=1.1,label="Repetition_Penalty") | |
# max_new_tokens = gr.Slider(1000,32768,value=32768,label="Max_New_Tokens") | |
# chatbot = gr.Chatbot(type="messages") | |
# msg = gr.Textbox(placeholder="Type your message here…", lines=1) | |
# clear = gr.Button("Clear") | |
# def user_fn(user_msg, history): | |
# return "", history + [{"role": "user", "content": user_msg}] | |
# msg.submit( | |
# user_fn, [msg, chatbot], [msg, chatbot], queue=False | |
# ).then( | |
# chat_fn, [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], chatbot | |
# ) | |
# clear.click(lambda: None, None, chatbot, queue=False) | |
# demo.queue().launch() | |
import gc | |
from pathlib import Path | |
from llama_cpp import Llama | |
import gradio as gr | |
from pypdf import PdfReader | |
import pandas as pd | |
from docx import Document | |
MAX_TOKENS = 10_000 | |
llm = Llama.from_pretrained( | |
repo_id="unsloth/SmolLM3-3B-GGUF", | |
filename="SmolLM3-3B-Q4_K_M.gguf", | |
n_ctx=MAX_TOKENS, | |
) | |
gc.collect() | |
# ---------- helpers ---------- | |
def read_file(p: Path) -> str: | |
try: | |
suffix = p.suffix.lower() | |
if suffix == ".pdf": | |
with p.open("rb") as f: | |
reader = PdfReader(f) | |
return "\n".join(page.extract_text() or "" for page in reader.pages) | |
elif suffix in (".xlsx", ".xls"): | |
sheets = pd.read_excel(p, sheet_name=None) | |
text = "" | |
for sheet_name, df in sheets.items(): | |
text += df.to_string() | |
return text | |
elif suffix == ".docx": | |
with p.open("rb") as f: | |
doc = Document(f) | |
return "\n".join(para.text for para in doc.paragraphs) | |
else: | |
return p.read_text(encoding="utf-8", errors="ignore") | |
except Exception: | |
return "[could not read file]" | |
def build_messages(history, enable_thinking: bool): | |
messages = [] | |
for h in history: | |
messages.append({"role": h["role"], "content": h["content"]}) | |
system_flag = "/think" if enable_thinking else "/no_think" | |
messages.insert(0, {"role": "system", "content": system_flag}) | |
return messages | |
def chat_fn(history, enable_thinking, temperature, top_p, top_k, | |
repetition_penalty, max_new_tokens): | |
messages = build_messages(history, enable_thinking) | |
response = llm.create_chat_completion( | |
messages=messages, | |
max_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
repeat_penalty=repetition_penalty | |
) | |
response_text = response['choices'][0]['message']['content'] | |
if isinstance(response_text, str): | |
response = response_text.replace('<think>', "# <think>").replace('</think>', "</think>") | |
elif isinstance(response_text, list): | |
response = [t.replace('<think>', "# <think>").replace('</think>', "</think>") for t in response_text] | |
else: | |
raise ValueError("Malformed response from tokenizer") | |
history.append({"role": "assistant", "content": ""}) | |
for ch in response: | |
history[-1]["content"] += ch | |
yield history | |
# ---------- UI ---------- | |
with gr.Blocks(title="SmolLM3-3B Chat") as demo: | |
gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)") | |
with gr.Row(): | |
enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True) | |
temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature") | |
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p") | |
top_k = gr.Slider(1, 40, value=20, label="Top-k") | |
repetition_penalty = gr.Slider(1.0, 1.4, value=1.1, label="Repetition Penalty") | |
max_new_tokens = gr.Slider(1000, MAX_TOKENS, value=MAX_TOKENS, label="Max New Tokens") | |
chatbot = gr.Chatbot(type="messages") | |
with gr.Row(): | |
msg = gr.Textbox(placeholder="Type your message here…", lines=1, scale=8) | |
send_btn = gr.Button("Send", scale=1) | |
file_uploader = gr.File(label="Attach file(s)", file_count="multiple", file_types=None) | |
clear = gr.Button("Clear") | |
def user_fn(user_msg, history, files): | |
if files: | |
file_contents = "\n\n".join(read_file(Path(fp)) for fp in files) | |
user_msg += f"\n\n# FILE CONTENT:\n\n{file_contents}" | |
return "", history + [{"role": "user", "content": user_msg}], None # clear file_uploader | |
# Submit on button click or Enter key | |
for trigger in (msg.submit, send_btn.click): | |
trigger( | |
user_fn, [msg, chatbot, file_uploader], [msg, chatbot, file_uploader], queue=False | |
).then( | |
chat_fn, | |
[chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], | |
chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue().launch() | |