Spaces:
Build error
Build error
File size: 11,470 Bytes
602010e 6436528 8140d5a 6436528 ac41acd 4c1dfd9 8140d5a 4c1dfd9 8140d5a ac41acd 8140d5a ac41acd 4c1dfd9 8140d5a ac41acd 8140d5a 4c1dfd9 8140d5a 6436528 9bcfd33 6436528 4c1dfd9 6436528 4c1dfd9 6436528 ac41acd 6436528 4c1dfd9 16b18f5 4c1dfd9 ac41acd 585435b 602010e 585435b 8140d5a 585435b 8140d5a e102b08 585435b 2bb4d5a 94ccb47 b1558e3 8140d5a 6436528 602010e 94ccb47 8140d5a 6436528 8140d5a 1ceaf3e 15bd5c0 b1558e3 1ceaf3e b1558e3 1ceaf3e 15bd5c0 fb4e39c 15bd5c0 000548f 6436528 15bd5c0 6436528 15bd5c0 6436528 15bd5c0 6436528 20ff6a1 6436528 15bd5c0 6436528 15bd5c0 50a8e40 15bd5c0 6436528 15bd5c0 6436528 15bd5c0 6436528 15bd5c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# import gc
# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig
# # # quant_config = HqqConfig(nbits=8, group_size=64)
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# print("Loading tokenizer & model…")
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)
# model =\
# AutoModelForCausalLM\
# .from_pretrained(
# MODEL_ID,
# torch_dtype=torch.float16,
# # device_map="cuda",
# # quantization_config=quant_config
# ).to(DEVICE)
# gc.collect()
#########
# import torch
# from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
# from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig
# # quant_config = Float8WeightOnlyConfig()
# quant_config = Float8DynamicActivationFloat8WeightConfig()
# quantization_config = TorchAoConfig(quant_type=quant_config)
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = AutoModelForCausalLM.from_pretrained(
# MODEL_ID,
# torch_dtype="auto",
# device_map="auto",
# quantization_config=quantization_config)
# gc.collect()
#########
# from unsloth import FastLanguageModel
# model, tokenizer = FastLanguageModel.from_pretrained(
# "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
# max_seq_length=128_000,
# load_in_4bit=True
# )
#########
# import gc
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
# from optimum.onnxruntime.configuration import AutoQuantizationConfig
# MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)
# print("Creating quant config")
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
# print("Creating quant config successful")
# print("Creating quantizer")
# quantizer = ORTQuantizer.from_pretrained(model)
# print("Creating quantizer successful")
# # Step 4: Perform quantization saving output in a new directory
# quantized_model_dir = "./quantized_model"
# print("Starting quantization...")
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
# print("Quantization was successful. Garbage collecting...")
# del(quantizer)
# del(qconfig)
# del(model)
# Run garbage collection again to release memory from quantizer objects
# gc.collect()
# # Step 5: Load the quantized ONNX model for inference
# print("Loading quantized ONNX model for inference...")
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
# print("Loading model was succcessful. Garbage collecting.")
# Garbage collection again after final loading
# gc.collect()
#########
# print("Loading tokenizer & model…")
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM
# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = ORTModelForCausalLM.from_pretrained(MODEL_ID, export=True, quantize=True)
#########
# -------------------------------------------------
# Optional tool(s)
# -------------------------------------------------
# TOOLS = [{
# "name": "get_weather",
# "description": "Get the current weather in a given city",
# "parameters": {
# "type": "object",
# "properties": {
# "city": {"type": "string", "description": "City name"}
# },
# "required": ["city"]
# }
# }]
# -------------------------------------------------
# Helpers
# -------------------------------------------------
# def build_messages(history, enable_thinking: bool):
# """Convert Gradio history to the chat template."""
# messages = []
# for h in history:
# messages.append({"role": h["role"], "content": h["content"]})
# # Add system instruction for mode
# system_flag = "/think" if enable_thinking else "/no_think"
# messages.insert(0, {"role": "system", "content": system_flag})
# return messages
# def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_penalty, max_new_tokens):
# """Generate a streaming response."""
# messages = build_messages(history, enable_thinking)
# text = tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True,
# # xml_tools=TOOLS
# )
# inputs = tokenizer(text, return_tensors="pt")
# gc.collect()
# with torch.inference_mode():
# streamer = model.generate(
# **inputs,
# max_new_tokens=max_new_tokens,
# do_sample=True,
# temperature=temperature,
# top_p=top_p,
# top_k=top_k,
# repetition_penalty=repetition_penalty,
# pad_token_id=tokenizer.eos_token_id,
# streamer=None # we'll yield manually
# )
# gc.collect()
# output_ids = streamer[0][len(inputs.input_ids[0]):]
# response = tokenizer.decode(output_ids, skip_special_tokens=True)
# if isinstance(response, str):
# response = response.replace('<think>',"# <think>").replace('</think>',"</think>")
# elif isinstance(response,list):
# response = [paper.replace('<think>',"# <think>").replace('</think>',"</think>") for paper in response]
# else:
# raise ValueError("Tokenizer response seems malformed; Not a string, nor a list?!?!")
# # streaming char-by-char
# history.append({"role": "assistant", "content": ""})
# for ch in response:
# history[-1]["content"] += ch
# yield history
# # -------------------------------------------------
# # Blocks UI
# # -------------------------------------------------
# with gr.Blocks(title="SmolLM3-3B Chat") as demo:
# gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
# with gr.Row():
# enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
# temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
# top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
# top_k = gr.Slider(1,40,value=20,label="Top_k")
# repetition_penalty = gr.Slider(1.0,1.4,value=1.1,label="Repetition_Penalty")
# max_new_tokens = gr.Slider(1000,32768,value=32768,label="Max_New_Tokens")
# chatbot = gr.Chatbot(type="messages")
# msg = gr.Textbox(placeholder="Type your message here…", lines=1)
# clear = gr.Button("Clear")
# def user_fn(user_msg, history):
# return "", history + [{"role": "user", "content": user_msg}]
# msg.submit(
# user_fn, [msg, chatbot], [msg, chatbot], queue=False
# ).then(
# chat_fn, [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], chatbot
# )
# clear.click(lambda: None, None, chatbot, queue=False)
# demo.queue().launch()
import gc
from pathlib import Path
from llama_cpp import Llama
import gradio as gr
from pypdf import PdfReader
import pandas as pd
from docx import Document
MAX_TOKENS = 10_000
llm = Llama.from_pretrained(
repo_id="unsloth/SmolLM3-3B-GGUF",
filename="SmolLM3-3B-Q4_K_M.gguf",
n_ctx=MAX_TOKENS,
)
gc.collect()
# ---------- helpers ----------
def read_file(p: Path) -> str:
try:
suffix = p.suffix.lower()
if suffix == ".pdf":
with p.open("rb") as f:
reader = PdfReader(f)
return "\n".join(page.extract_text() or "" for page in reader.pages)
elif suffix in (".xlsx", ".xls"):
sheets = pd.read_excel(p, sheet_name=None)
text = ""
for sheet_name, df in sheets.items():
text += df.to_string()
return text
elif suffix == ".docx":
with p.open("rb") as f:
doc = Document(f)
return "\n".join(para.text for para in doc.paragraphs)
else:
return p.read_text(encoding="utf-8", errors="ignore")
except Exception:
return "[could not read file]"
def build_messages(history, enable_thinking: bool):
messages = []
for h in history:
messages.append({"role": h["role"], "content": h["content"]})
system_flag = "/think" if enable_thinking else "/no_think"
messages.insert(0, {"role": "system", "content": system_flag})
return messages
def chat_fn(history, enable_thinking, temperature, top_p, top_k,
repetition_penalty, max_new_tokens):
messages = build_messages(history, enable_thinking)
response = llm.create_chat_completion(
messages=messages,
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repetition_penalty
)
response_text = response['choices'][0]['message']['content']
if isinstance(response_text, str):
response = response_text.replace('<think>', "# <think>").replace('</think>', "</think>")
elif isinstance(response_text, list):
response = [t.replace('<think>', "# <think>").replace('</think>', "</think>") for t in response_text]
else:
raise ValueError("Malformed response from tokenizer")
history.append({"role": "assistant", "content": ""})
for ch in response:
history[-1]["content"] += ch
yield history
# ---------- UI ----------
with gr.Blocks(title="SmolLM3-3B Chat") as demo:
gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
with gr.Row():
enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
top_k = gr.Slider(1, 40, value=20, label="Top-k")
repetition_penalty = gr.Slider(1.0, 1.4, value=1.1, label="Repetition Penalty")
max_new_tokens = gr.Slider(1000, MAX_TOKENS, value=MAX_TOKENS, label="Max New Tokens")
chatbot = gr.Chatbot(type="messages")
with gr.Row():
msg = gr.Textbox(placeholder="Type your message here…", lines=1, scale=8)
send_btn = gr.Button("Send", scale=1)
file_uploader = gr.File(label="Attach file(s)", file_count="multiple", file_types=None)
clear = gr.Button("Clear")
def user_fn(user_msg, history, files):
if files:
file_contents = "\n\n".join(read_file(Path(fp)) for fp in files)
user_msg += f"\n\n# FILE CONTENT:\n\n{file_contents}"
return "", history + [{"role": "user", "content": user_msg}], None # clear file_uploader
# Submit on button click or Enter key
for trigger in (msg.submit, send_btn.click):
trigger(
user_fn, [msg, chatbot, file_uploader], [msg, chatbot, file_uploader], queue=False
).then(
chat_fn,
[chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens],
chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue().launch()
|