File size: 11,470 Bytes
602010e
6436528
8140d5a
6436528
ac41acd
4c1dfd9
8140d5a
4c1dfd9
8140d5a
ac41acd
 
8140d5a
ac41acd
 
4c1dfd9
8140d5a
ac41acd
 
 
 
 
 
 
 
8140d5a
4c1dfd9
8140d5a
 
 
6436528
 
 
9bcfd33
6436528
 
 
4c1dfd9
6436528
4c1dfd9
6436528
 
 
 
 
 
ac41acd
6436528
4c1dfd9
16b18f5
4c1dfd9
 
 
 
 
 
 
 
 
 
ac41acd
 
585435b
602010e
585435b
 
 
 
8140d5a
585435b
8140d5a
e102b08
 
585435b
 
2bb4d5a
94ccb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1558e3
8140d5a
6436528
602010e
94ccb47
 
 
 
8140d5a
 
6436528
8140d5a
1ceaf3e
15bd5c0
b1558e3
 
 
 
1ceaf3e
b1558e3
 
 
1ceaf3e
 
 
15bd5c0
 
 
 
fb4e39c
 
 
 
 
 
 
 
 
 
 
15bd5c0
 
 
 
000548f
6436528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15bd5c0
 
 
 
 
 
 
 
6436528
 
15bd5c0
6436528
 
 
 
 
 
 
 
15bd5c0
6436528
 
 
 
 
20ff6a1
6436528
15bd5c0
 
 
 
 
 
6436528
15bd5c0
 
 
50a8e40
15bd5c0
 
6436528
 
 
 
15bd5c0
6436528
 
 
 
 
15bd5c0
 
6436528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15bd5c0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

# import gc

# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM #, HqqConfig

# # # quant_config = HqqConfig(nbits=8, group_size=64)

# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# print("Loading tokenizer & model…")
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# # # model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16).to(DEVICE)

# model =\
#         AutoModelForCausalLM\
#                 .from_pretrained(
#                         MODEL_ID, 
#                         torch_dtype=torch.float16, 
#                         # device_map="cuda", 
#                         # quantization_config=quant_config
#         ).to(DEVICE)

# gc.collect()

#########

# import torch
# from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer
# from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, Float8WeightOnlyConfig

# # quant_config = Float8WeightOnlyConfig()
# quant_config = Float8DynamicActivationFloat8WeightConfig()
# quantization_config = TorchAoConfig(quant_type=quant_config)

# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"

# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = AutoModelForCausalLM.from_pretrained(
#     MODEL_ID,
#     torch_dtype="auto",
#     device_map="auto",
#     quantization_config=quantization_config)

# gc.collect()


#########

# from unsloth import FastLanguageModel

# model, tokenizer = FastLanguageModel.from_pretrained(
#     "unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
#     max_seq_length=128_000,
#     load_in_4bit=True
# )

#########

# import gc

# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM, ORTQuantizer
# from optimum.onnxruntime.configuration import AutoQuantizationConfig

# MODEL_NAME = "HuggingFaceTB/SmolLM3-3B"



# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
# model = ORTModelForCausalLM.from_pretrained(MODEL_NAME, export=True)

# print("Creating quant config")
# qconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=True)
# print("Creating quant config successful")

# print("Creating quantizer")
# quantizer = ORTQuantizer.from_pretrained(model)
# print("Creating quantizer successful")
# # Step 4: Perform quantization saving output in a new directory
# quantized_model_dir = "./quantized_model"
# print("Starting quantization...")
# quantizer.quantize(save_dir=quantized_model_dir, quantization_config=qconfig)
# print("Quantization was successful. Garbage collecting...")

# del(quantizer)
# del(qconfig)
# del(model)

# Run garbage collection again to release memory from quantizer objects
# gc.collect()

# # Step 5: Load the quantized ONNX model for inference
# print("Loading quantized ONNX model for inference...")
# model = ORTModelForCausalLM.from_pretrained(quantized_model_dir)
# print("Loading model was succcessful. Garbage collecting.")

# Garbage collection again after final loading
# gc.collect()

#########

# print("Loading tokenizer & model…")
# import gradio as gr
# from transformers import AutoTokenizer
# from optimum.onnxruntime import ORTModelForCausalLM

# MODEL_ID = "HuggingFaceTB/SmolLM3-3B"
# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# model = ORTModelForCausalLM.from_pretrained(MODEL_ID, export=True, quantize=True)

#########


# -------------------------------------------------
# Optional tool(s)
# -------------------------------------------------
# TOOLS = [{
#     "name": "get_weather",
#     "description": "Get the current weather in a given city",
#     "parameters": {
#         "type": "object",
#         "properties": {
#             "city": {"type": "string", "description": "City name"}
#         },
#         "required": ["city"]
#     }
# }]

# -------------------------------------------------
# Helpers
# -------------------------------------------------

# def build_messages(history, enable_thinking: bool):
#     """Convert Gradio history to the chat template."""
#     messages = []
#     for h in history:
#         messages.append({"role": h["role"], "content": h["content"]})
#     # Add system instruction for mode
#     system_flag = "/think" if enable_thinking else "/no_think"
#     messages.insert(0, {"role": "system", "content": system_flag})
#     return messages

# def chat_fn(history, enable_thinking, temperature, top_p, top_k, repetition_penalty, max_new_tokens):
#     """Generate a streaming response."""
#     messages = build_messages(history, enable_thinking)
#     text = tokenizer.apply_chat_template(
#         messages,
#         tokenize=False,
#         add_generation_prompt=True,
#         # xml_tools=TOOLS
#     )
#     inputs = tokenizer(text, return_tensors="pt")
#     gc.collect()
#     with torch.inference_mode():
#         streamer = model.generate(
#             **inputs,
#             max_new_tokens=max_new_tokens,
#             do_sample=True,
#             temperature=temperature,
#             top_p=top_p,
#             top_k=top_k,
#             repetition_penalty=repetition_penalty,
#             pad_token_id=tokenizer.eos_token_id,
#             streamer=None          # we'll yield manually
#         )
#     gc.collect()
#     output_ids = streamer[0][len(inputs.input_ids[0]):]
#     response = tokenizer.decode(output_ids, skip_special_tokens=True)
#     if isinstance(response, str): 
#         response = response.replace('<think>',"# &lt;think&gt;").replace('</think>',"&lt;/think&gt;")
#     elif isinstance(response,list):
#         response = [paper.replace('<think>',"# &lt;think&gt;").replace('</think>',"&lt;/think&gt;") for paper in response]
#     else:
#         raise ValueError("Tokenizer response seems malformed; Not a string, nor a list?!?!")

#     # streaming char-by-char
#     history.append({"role": "assistant", "content": ""})
#     for ch in response:
#         history[-1]["content"] += ch
#         yield history

# # -------------------------------------------------
# # Blocks UI
# # -------------------------------------------------
# with gr.Blocks(title="SmolLM3-3B Chat") as demo:
#     gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
#     with gr.Row():
#         enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
#         temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
#         top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
#         top_k = gr.Slider(1,40,value=20,label="Top_k")
#         repetition_penalty = gr.Slider(1.0,1.4,value=1.1,label="Repetition_Penalty")
#         max_new_tokens = gr.Slider(1000,32768,value=32768,label="Max_New_Tokens")
#     chatbot = gr.Chatbot(type="messages")
#     msg = gr.Textbox(placeholder="Type your message here…", lines=1)
#     clear = gr.Button("Clear")

#     def user_fn(user_msg, history):
#         return "", history + [{"role": "user", "content": user_msg}]

#     msg.submit(
#         user_fn, [msg, chatbot], [msg, chatbot], queue=False
#     ).then(
#         chat_fn, [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens], chatbot
#     )
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.queue().launch()

import gc
from pathlib import Path
from llama_cpp import Llama
import gradio as gr

from pypdf import PdfReader
import pandas as pd
from docx import Document

MAX_TOKENS = 10_000

llm = Llama.from_pretrained(
    repo_id="unsloth/SmolLM3-3B-GGUF",
    filename="SmolLM3-3B-Q4_K_M.gguf",
    n_ctx=MAX_TOKENS,
)
gc.collect()

# ---------- helpers ----------


def read_file(p: Path) -> str:
    try:
        suffix = p.suffix.lower()
        if suffix == ".pdf":
            with p.open("rb") as f:
                reader = PdfReader(f)
                return "\n".join(page.extract_text() or "" for page in reader.pages)
        elif suffix in (".xlsx", ".xls"):
            sheets = pd.read_excel(p, sheet_name=None)
            text = ""
            for sheet_name, df in sheets.items():
                text += df.to_string()
            return text
        elif suffix == ".docx":
            with p.open("rb") as f:
                doc = Document(f)
                return "\n".join(para.text for para in doc.paragraphs)
        else:
            return p.read_text(encoding="utf-8", errors="ignore")
    except Exception:
        return "[could not read file]"



def build_messages(history, enable_thinking: bool):
    messages = []
    for h in history:
        messages.append({"role": h["role"], "content": h["content"]})
    system_flag = "/think" if enable_thinking else "/no_think"
    messages.insert(0, {"role": "system", "content": system_flag})
    return messages

def chat_fn(history, enable_thinking, temperature, top_p, top_k,
            repetition_penalty, max_new_tokens):
    messages = build_messages(history, enable_thinking)

    response = llm.create_chat_completion(
        messages=messages,
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        repeat_penalty=repetition_penalty
    )
    response_text = response['choices'][0]['message']['content']
    if isinstance(response_text, str):
        response = response_text.replace('<think>', "# &lt;think&gt;").replace('</think>', "&lt;/think&gt;")
    elif isinstance(response_text, list):
        response = [t.replace('<think>', "# &lt;think&gt;").replace('</think>', "&lt;/think&gt;") for t in response_text]
    else:
        raise ValueError("Malformed response from tokenizer")

    history.append({"role": "assistant", "content": ""})
    for ch in response:
        history[-1]["content"] += ch
        yield history

# ---------- UI ----------
with gr.Blocks(title="SmolLM3-3B Chat") as demo:
    gr.Markdown("## 🤖 SmolLM3-3B Chatbot (Streaming)")
    with gr.Row():
        enable_think = gr.Checkbox(label="Enable Extended Thinking (/think)", value=True)
        temperature = gr.Slider(0.0, 1.0, value=0.6, label="Temperature")
        top_p = gr.Slider(0.0, 1.0, value=0.95, label="Top-p")
        top_k = gr.Slider(1, 40, value=20, label="Top-k")
        repetition_penalty = gr.Slider(1.0, 1.4, value=1.1, label="Repetition Penalty")
        max_new_tokens = gr.Slider(1000, MAX_TOKENS, value=MAX_TOKENS, label="Max New Tokens")

    chatbot = gr.Chatbot(type="messages")
    with gr.Row():
        msg = gr.Textbox(placeholder="Type your message here…", lines=1, scale=8)
        send_btn = gr.Button("Send", scale=1)
    file_uploader = gr.File(label="Attach file(s)", file_count="multiple", file_types=None)

    clear = gr.Button("Clear")

    def user_fn(user_msg, history, files):
        if files:
            file_contents = "\n\n".join(read_file(Path(fp)) for fp in files)
            user_msg += f"\n\n# FILE CONTENT:\n\n{file_contents}"
        return "", history + [{"role": "user", "content": user_msg}], None  # clear file_uploader

    # Submit on button click or Enter key
    for trigger in (msg.submit, send_btn.click):
        trigger(
            user_fn, [msg, chatbot, file_uploader], [msg, chatbot, file_uploader], queue=False
        ).then(
            chat_fn,
            [chatbot, enable_think, temperature, top_p, top_k, repetition_penalty, max_new_tokens],
            chatbot
        )

    clear.click(lambda: None, None, chatbot, queue=False)

demo.queue().launch()