davidgturner's picture
- changes for local model
07ad0d5
raw
history blame
11.7 kB
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import Tool, CodeAgent, Model
# Import internal modules
from config import (
DEFAULT_API_URL
)
from tools.tool_manager import ToolManager
from utils.local_model import LocalTransformersModel
class GaiaToolCallingAgent:
"""Tool-calling agent specifically designed for the GAIA system."""
def __init__(self, local_model=None):
print("GaiaToolCallingAgent initialized.")
self.tool_manager = ToolManager()
self.name = "tool_agent" # Add required name attribute for smolagents integration
self.description = "A specialized agent that uses various tools to answer questions" # Required by smolagents
# Use local model if provided, or create a simpler one
self.local_model = local_model
if not self.local_model:
try:
from utils.local_model import LocalTransformersModel
self.local_model = LocalTransformersModel(
model_name="TinyLlama/TinyLlama-1.1B-Chat-v0.6",
max_tokens=512
)
except Exception as e:
print(f"Couldn't initialize local model in tool agent: {e}")
self.local_model = None
def run(self, query: str) -> str:
"""Process a query and return a response using available tools."""
print(f"Processing query: {query}")
tools = self.tool_manager.get_tools()
# For each tool, try to get relevant information
context_info = []
for tool in tools:
try:
if self._should_use_tool(tool, query):
print(f"Using tool: {tool.name}")
result = tool.forward(query)
if result:
context_info.append(f"{tool.name} Results:\n{result}")
except Exception as e:
print(f"Error using {tool.name}: {e}")
# Combine all context information
full_context = "\n\n".join(context_info) if context_info else ""
# If we have context and a local model, generate a proper response
if full_context and self.local_model:
try:
prompt = f"""
Based on the following information, please provide a comprehensive answer to the question: "{query}"
CONTEXT INFORMATION:
{full_context}
Answer:
"""
response = self.local_model.generate(prompt)
return response
except Exception as e:
print(f"Error generating response with local model: {e}")
# Fall back to returning just the context
return full_context
else:
# No context or no model, return whatever we have
if not full_context:
return "I couldn't find any relevant information to answer your question."
return full_context
def __call__(self, query: str) -> str:
"""Make the agent callable so it can be used directly by CodeAgent."""
print(f"Tool agent received query: {query}")
return self.run(query)
def _should_use_tool(self, tool: Tool, query: str) -> bool:
"""Determine if a specific tool should be used for the query."""
query_lower = query.lower()
# Tool-specific patterns
patterns = {
"web_search": ["current", "latest", "recent", "who", "what", "when", "where", "how"],
"web_content": ["content", "webpage", "website", "page"],
"youtube_video": ["youtube.com", "youtu.be"],
"wikipedia_search": ["wikipedia", "wiki", "article"],
"gaia_retriever": ["gaia", "agent", "ai", "artificial intelligence"]
}
# Use all tools if patterns dict doesn't have the tool name
if tool.name not in patterns:
return True
return any(pattern in query_lower for pattern in patterns.get(tool.name, []))
def create_manager_agent() -> CodeAgent:
"""Create and configure the main GAIA agent."""
try:
# Import config for local model
from config import LOCAL_MODEL_CONFIG
# Use local model to avoid credit limits
model = LocalTransformersModel(
model_name=LOCAL_MODEL_CONFIG["model_name"],
device=LOCAL_MODEL_CONFIG["device"],
max_tokens=LOCAL_MODEL_CONFIG["max_tokens"],
temperature=LOCAL_MODEL_CONFIG["temperature"]
)
print(f"Using local model: {LOCAL_MODEL_CONFIG['model_name']}")
except Exception as e:
print(f"Error setting up local model: {e}")
# Use a simplified configuration as fallback
model = LocalTransformersModel(
model_name="TinyLlama/TinyLlama-1.1B-Chat-v0.6",
device="cpu"
)
print("Using fallback model configuration")
# Initialize the managed tool-calling agent, sharing the model
tool_agent = GaiaToolCallingAgent(local_model=model)
# Create the manager agent
manager_agent = CodeAgent(
model=model,
tools=[], # No direct tools for manager
managed_agents=[tool_agent],
additional_authorized_imports=[
"json",
"pandas",
"numpy",
"re",
"requests",
"bs4"
],
planning_interval=3,
verbosity_level=2,
max_steps=10
)
print("Manager agent created with local model")
return manager_agent
def create_agent():
"""Create the GAIA agent system."""
try:
print("Initializing GAIA agent system...")
return create_manager_agent()
except Exception as e:
print(f"Error creating GAIA agent: {e}")
return None
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the GAIA agent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Initialize Agent
try:
print("Initializing GAIA agent system...")
agent = create_agent()
if not agent:
return "Error: Could not initialize agent.", None
print("GAIA agent initialization complete.")
except Exception as e:
print(f"Error initializing agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run Agent on Questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Run the agent and get the response
response = agent.run(f"Answer this question concisely: {question_text}")
# Clean up the response if needed
if isinstance(response, dict):
submitted_answer = response.get("answer", str(response))
else:
submitted_answer = str(response)
# Add to submission payload
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
# Log the result
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
} # 5. Submit
print(f"Submitting {len(answers_payload)} answers to API...")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
status_message = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return status_message, pd.DataFrame(results_log)
except Exception as e:
status_message = f"Submission Failed: {str(e)}"
print(f"Error during submission: {e}")
return status_message, pd.DataFrame(results_log)
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and see the score.
The agent uses a managed tool-calling architecture and the smolagents framework for reliable answers.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " GAIA Agent Starting " + "-"*30)
demo.launch(debug=True, share=False)