davron04 commited on
Commit
14d9373
·
1 Parent(s): 0cf5320

updated app.py

Browse files
.idea/.name ADDED
@@ -0,0 +1 @@
 
 
1
+ app.py
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="Black">
4
+ <option name="sdkName" value="Python 3.12 (1. Two Sum)" />
5
+ </component>
6
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12 (CNN_Pneumonia_detection)" project-jdk-type="Python SDK" />
7
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="" vcs="Git" />
5
+ </component>
6
+ </project>
app.py CHANGED
@@ -1,5 +1,8 @@
1
  import streamlit as st
2
  import tensorflow as tf
 
 
 
3
  import torch
4
  import torch.nn as nn
5
  import numpy as np
@@ -51,12 +54,10 @@ if uploaded_file is not None:
51
 
52
  else: # TensorFlow
53
  # Convert Image to NumPy and Normalize
54
- img_resized = image.resize((image_size, image_size))
55
- image_array = np.array(img_resized) / 255.0
56
- image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
57
 
58
  # Make Prediction
59
- prediction = tf_model.predict(image_array)[0][0] # Extract single value
60
 
61
  # Display Prediction
62
  st.header(
@@ -64,5 +65,5 @@ if uploaded_file is not None:
64
  divider='blue'
65
  )
66
  # Display Uploaded Image
67
- st.image(image, caption="Uploaded X-ray", use_container_width=True)
68
 
 
1
  import streamlit as st
2
  import tensorflow as tf
3
+ from tensorflow import keras
4
+ from tensorflow.keras.preprocessing.image import ImageDataGenerator
5
+ import tensorflow.keras.applications.resnet_v2 as resnet_v2
6
  import torch
7
  import torch.nn as nn
8
  import numpy as np
 
54
 
55
  else: # TensorFlow
56
  # Convert Image to NumPy and Normalize
57
+ image_preprocessed = resnet_v2.preprocess_input(image)
 
 
58
 
59
  # Make Prediction
60
+ prediction = tf_model.predict(image_preprocessed)[0][0] # Extract single value
61
 
62
  # Display Prediction
63
  st.header(
 
65
  divider='blue'
66
  )
67
  # Display Uploaded Image
68
+ st.image(image, caption="Uploaded image", use_container_width=True)
69