File size: 5,305 Bytes
10e9b7d
6e92f6f
10e9b7d
eccf8e4
3c4371f
6576efa
6e92f6f
 
10e9b7d
6576efa
 
6e92f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91cad6f
31243f4
6576efa
 
 
2d924bf
 
6e92f6f
2d924bf
f8e24f8
f86bd24
 
6e92f6f
dc1160b
 
91cad6f
f86bd24
6e92f6f
dc1160b
6576efa
f86bd24
91cad6f
f86bd24
4021bf3
6e92f6f
6576efa
 
7e4a06b
6576efa
3c4371f
7e4a06b
7d65c66
3c4371f
6e92f6f
 
e80aab9
31243f4
6576efa
31243f4
 
6576efa
36ed51a
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
7d65c66
6576efa
e80aab9
7d65c66
6576efa
 
31243f4
 
dc1160b
f8e24f8
6576efa
31243f4
f8e24f8
 
 
6e92f6f
 
 
 
 
f8e24f8
 
31243f4
7d65c66
 
6576efa
 
 
 
 
31243f4
6576efa
 
 
 
 
31243f4
 
6576efa
31243f4
6576efa
 
 
 
 
e80aab9
 
7d65c66
e80aab9
 
31243f4
6e92f6f
 
6576efa
6e92f6f
6576efa
e80aab9
6576efa
7d65c66
6576efa
e80aab9
6e92f6f
e80aab9
dc1160b
6576efa
 
dc1160b
 
6576efa
7e4a06b
31243f4
6576efa
dc1160b
e80aab9
6576efa
e80aab9
 
6576efa
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import time
import gradio as gr
import requests
import pandas as pd

from smolagents import CodeAgent, OpenAIServerModel
from langchain_community.tools import DuckDuckGoSearchRun

# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_QUESTION_LENGTH = 4000
MAX_WEBPAGE_CONTENT = 3000

# --- Reliable DuckDuckGo Tool with Retry ---
class ReliableDuckDuckGoTool(DuckDuckGoSearchRun):
    def _run(self, query: str) -> str:
        for attempt in range(3):
            try:
                return super()._run(query)
            except Exception as e:
                if "ratelimit" in str(e).lower() or "202" in str(e):
                    print(f"Rate limited. Retry {attempt + 1}/3...")
                    time.sleep(3 * (attempt + 1))
                else:
                    raise e
        raise RuntimeError("DuckDuckGo search failed after retries")

# --- Smart GAIA Agent ---
class SmartGAIAAgent:
    def __init__(self):
        self.api_key = os.getenv("OPENAI_API_KEY")
        if not self.api_key:
            raise ValueError("Missing OPENAI_API_KEY")
        self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key)
        self.agent = CodeAgent(
            tools=[ReliableDuckDuckGoTool()],
            model=self.model,
            add_base_tools=True
        )

    def truncate_question(self, question: str) -> str:
        return question[:MAX_QUESTION_LENGTH]

    def __call__(self, question: str) -> str:
        try:
            clean_question = self.truncate_question(question)
            result = self.agent.run(clean_question)
            return result.strip()
        except Exception as e:
            print(f"Agent error: {e}")
            return "error"

# --- Evaluation + Submission ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        return "Please Login to Hugging Face with the button.", None

    questions_url = f"{DEFAULT_API_URL}/questions"
    submit_url = f"{DEFAULT_API_URL}/submit"

    try:
        agent = SmartGAIAAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    answers_payload = []
    results_log = []

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question", "")

        if not task_id or not question_text:
            continue
        if len(question_text) > MAX_QUESTION_LENGTH:
            print(f"Skipping long question: {task_id}")
            continue
        if any(keyword in question_text.lower() for keyword in [
            'attached', '.mp3', '.wav', '.png', '.jpg', '.jpeg',
            'youtube', '.mp4', 'video', 'listen', 'watch'
        ]):
            print(f"Skipping unsupported media question: {task_id}")
            continue

        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"ERROR: {e}"
            })

    if not answers_payload:
        return "No answers were submitted.", pd.DataFrame(results_log)

    submission_data = {
        "username": username,
        "agent_code": agent_code,
        "answers": answers_payload
    }

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\\n"
            f"User: {result_data.get('username')}\\n"
            f"Score: {result_data.get('score')}% "
            f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\\n"
            f"Message: {result_data.get('message')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission failed: {e}", pd.DataFrame(results_log)

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 GAIA Agent Evaluation")
    gr.Markdown("""
    1. Log in to Hugging Face
    2. Click 'Run Evaluation & Submit All Answers'
    3. View your score on the leaderboard
    """)
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Submission Status", lines=5)
    results_table = gr.DataFrame(label="Evaluation Results")

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)