File size: 3,038 Bytes
332e48b
5fffd11
6acc56a
6e0803e
 
08aa3fd
70672a2
167f257
 
ee06034
332e48b
 
 
5fffd11
167f257
8dcca97
08aa3fd
6acc56a
6e0803e
536b7f7
 
 
ee02e3a
273306b
6a05ca9
536b7f7
130b4f4
536b7f7
d8f0a51
536b7f7
d8f0a51
536b7f7
d8f0a51
536b7f7
130b4f4
536b7f7
d8f0a51
536b7f7
36284fd
536b7f7
 
62a6b31
536b7f7
28d119a
ee02e3a
37e6e4f
 
 
 
 
 
536b7f7
37e6e4f
 
 
 
 
 
 
 
 
 
 
536b7f7
37e6e4f
62a6b31
536b7f7
37e6e4f
 
536b7f7
37e6e4f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import re
import io
import base64
import requests
import pandas as pd
from word2number import w2n
from openai import OpenAI
from langchain_community.tools import DuckDuckGoSearchRun

class GaiaAgent:
    def __init__(self):
        self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
        self.api_url = "https://agents-course-unit4-scoring.hf.space"
        self.search_tool = DuckDuckGoSearchRun()

    def fetch_file(self, task_id):
        try:
            url = f"{self.api_url}/files/{task_id}"
            r = requests.get(url, timeout=10)
            r.raise_for_status()
            return r.content, r.headers.get("Content-Type", "")
        except:
            return None, None

    def ask(self, prompt):
        try:
            r = self.client.chat.completions.create(
                model="gpt-4-turbo",
                messages=[{"role": "user", "content": prompt}],
                temperature=0,
                timeout=30
            )
            return r.choices[0].message.content.strip()
        except:
            return "[ERROR: ask failed]"

    def search_context(self, query):
        try:
            result = self.search_tool.run(query)
            return result[:2000] if result else "[NO WEB RESULT]"
        except:
            return "[WEB ERROR]"

    def handle_file(self, content, ctype, question):
        try:
            if "image" in ctype:
                b64 = base64.b64encode(content).decode("utf-8")
                result = self.client.chat.completions.create(
                    model="gpt-4o",
                    messages=[
                        {"role": "system", "content": "You're a chess assistant. Reply only with the best move in algebraic notation (e.g., Qd1#)."},
                        {"role": "user", "content": [
                            {"type": "text", "text": question},
                            {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}}
                        ]}
                    ]
                )
                return result.choices[0].message.content.strip()
            if "audio" in ctype:
                with open("/tmp/audio.mp3", "wb") as f:
                    f.write(content)
                result = self.client.audio.transcriptions.create(model="whisper-1", file=open("/tmp/audio.mp3", "rb"))
                return result.text
            if "excel" in ctype:
                df = pd.read_excel(io.BytesIO(content), engine="openpyxl")
                df.columns = [c.lower().strip() for c in df.columns]
                if 'category' in df.columns and 'sales' in df.columns:
                    df = df.dropna(subset=['category', 'sales'])
                    df = df[df['category'].str.lower() == 'food']
                    df['sales'] = pd.to_numeric(df['sales'], errors='coerce')
                    return f"${df['sales'].sum():.2f}"
                return "[NO FOOD SALES DATA]"
            return content.decode("utf-8", errors="ignore")[:3000]
        except Exception as e: