File size: 12,459 Bytes
b27256b
10e9b7d
7821faf
4c200bf
7821faf
57bc7b8
b27256b
 
 
 
3a293e2
57bc7b8
3a293e2
b27256b
b253f96
b27256b
 
57bc7b8
b27256b
3a293e2
57bc7b8
b27256b
b253f96
b27256b
b253f96
b27256b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bc7b8
 
 
b27256b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bc7b8
 
b27256b
57bc7b8
 
 
b27256b
 
 
 
 
 
3a293e2
57bc7b8
b27256b
 
 
 
 
 
57bc7b8
3a293e2
57bc7b8
 
 
 
 
 
 
3a293e2
57bc7b8
7821faf
b27256b
7821faf
 
 
2c0ba2f
 
703ec74
 
 
 
3a293e2
 
 
 
b27256b
3a293e2
 
 
 
 
 
 
b27256b
3a293e2
 
 
 
b27256b
3a293e2
 
 
703ec74
 
188585a
7821faf
188585a
2c0ba2f
 
 
7821faf
703ec74
 
7821faf
b27256b
3a293e2
57bc7b8
b27256b
 
 
 
 
 
 
188585a
2c0ba2f
 
57bc7b8
 
 
 
 
 
 
b27256b
57bc7b8
b27256b
57bc7b8
 
 
 
b27256b
57bc7b8
b27256b
 
703ec74
57bc7b8
3a293e2
57bc7b8
7821faf
57bc7b8
3a293e2
 
 
7821faf
188585a
2c0ba2f
 
 
 
 
 
 
 
 
 
b27256b
 
 
7821faf
57bc7b8
188585a
b27256b
 
7821faf
b27256b
4c200bf
b27256b
f21f66c
2c0ba2f
703ec74
 
 
b27256b
 
 
703ec74
 
188585a
2c0ba2f
 
7821faf
703ec74
 
 
 
188585a
4c200bf
703ec74
 
57bc7b8
703ec74
 
 
 
 
57bc7b8
703ec74
 
 
 
 
 
7821faf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import requests
import os
import gradio as gr
import pandas as pd
import time
import re
import json
import wikipedia
import speech_recognition as sr
from pydub import AudioSegment
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_react_agent
from langchain.memory import ConversationSummaryMemory
from langchain.tools import Tool
from langchain.tools.python.tool import PythonREPLTool
from langchain_community.document_loaders import WikipediaLoader
from langchain.prompts import PromptTemplate

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# === TOOL: python_repl ===
repl_tool = PythonREPLTool(
    name="python_repl",
    description="A Python REPL for calculations and parsing. Input must be valid Python code, use print() to output results."
)

# === TOOL: file_saver ===
def download_and_save_file(args: dict) -> str:
    try:
        if isinstance(args, str):
            args = json.loads(args)
        url = args.get("url")
        local_filename = args.get("local_filename")
        if not url or not local_filename:
            return "Error: Both 'url' and 'local_filename' must be provided."
        response = requests.get(url, stream=True, timeout=30)
        response.raise_for_status()
        os.makedirs(os.path.dirname(local_filename) or '.', exist_ok=True)
        with open(local_filename, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        return f"File downloaded successfully to {local_filename}"
    except Exception as e:
        return f"Error downloading file: {e}"

file_saver_tool = Tool(
    name="file_saver",
    description="Downloads a file from a URL and saves it as the given local filename. Input: JSON with 'url' and 'local_filename'.",
    func=download_and_save_file,
)

# === TOOL: audio_transcriber_tool ===
def transcribe_audio_from_path(local_audio_path: str, language: str = "en-US") -> str:
    r = sr.Recognizer()
    temp_wav_path = "temp_audio_to_transcribe.wav"
    transcribed_text = ""
    try:
        if local_audio_path.startswith("http://") or local_audio_path.startswith("https://"):
            return "Error: Only local file paths allowed. Use 'file_saver' first."
        if not os.path.exists(local_audio_path):
            return f"Error: File not found: '{local_audio_path}'."
        audio = AudioSegment.from_file(local_audio_path)
        audio.export(temp_wav_path, format="wav")
        with sr.AudioFile(temp_wav_path) as source:
            audio_listened = r.record(source)
            try:
                transcribed_text = r.recognize_google(audio_listened, language=language)
            except sr.UnknownValueError:
                return "Could not understand audio."
            except sr.RequestError as e:
                return f"Could not request results from Google Speech Recognition; {e}"
    except Exception as e:
        return f"Error: {e}"
    finally:
        if os.path.exists(temp_wav_path):
            os.remove(temp_wav_path)
    return transcribed_text.strip()

audio_transcriber_tool = Tool(
    name="audio_transcriber_tool",
    description="Transcribes audio from a local file path to text. Input: path to audio file (e.g., 'myfile.mp3'). Use 'file_saver' to download first. Optionally set language.",
    func=transcribe_audio_from_path,
)

# === TOOL: wikipedia_search_tool2 ===
def wiki_search(query: str) -> str:
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return formatted_search_docs

wikipedia_search_tool2 = Tool(
    name="wikipedia_search_tool2",
    description="Search Wikipedia for a query and return up to 2 results. Input: query string.",
    func=wiki_search,
)

# === PROMPT ===
prompt = PromptTemplate(
    input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
    template="""
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks.
STRICT FINAL ANSWER RULES:
- Final Answer must be a number, a few words, or a comma-separated list, as requested.
- No units or extra punctuation unless asked.
Your response must start with 'Thought:' and finish with 'Final Answer:'.
You have access to the following tools:
{tools}
Use this format:
Thought: [thinking]
Action: [tool_name]
Action Input: [input]
Observation: [result]
...
Thought: [done]
Final Answer: [concise answer]

{chat_history}
New input: {input}
---
{agent_scratchpad}
"""
)

# === AGENT ===
class BasicAgent:
    def __init__(
        self,
        agent,
        tools,
        verbose=False,
        handle_parsing_errors=True,
        max_iterations=9,
        memory=None
    ):
        self.agent_obj = AgentExecutor(
            agent=agent,
            tools=tools,
            verbose=verbose,
            handle_parsing_errors=handle_parsing_errors,
            max_iterations=max_iterations,
            memory=memory
        )

    def __call__(self, question: str) -> str:
        result = self.agent_obj.invoke(
            {"input": question},
            config={"configurable": {"session_id": "test-session"}},
        )
        return result['output']

def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    openai_api_key = os.getenv("OPENAI_API_KEY")
    if not openai_api_key:
        print("OpenAI API key not found in environment variables.")
        return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None
    print(f"Using OpenAI API key: {openai_api_key[:4]}... (truncated for security)")

    llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)

    summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")

    summary_react_agent = create_react_agent(
        llm=llm_client,
        tools=[repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2],
        prompt=prompt
    )

    try:
        agent = BasicAgent(summary_react_agent, [repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2], True, True, 30, summary_memory)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        full_question_for_agent = question_text
        if file_name:
            attachment_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
            full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
            print(f"Running agent on task {task_id}: {full_question_for_agent}",flush=True)
        try:
            submitted_answer = agent(full_question_for_agent)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            time.sleep(1)
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status)
        cleaned_final_status = cleaned_final_status.strip()
        results_df = pd.DataFrame(results_log)
        return cleaned_final_status, results_df
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Clone this space and modify the code as needed.
        2. Log in to your Hugging Face account below.
        3. Click 'Run Evaluation & Submit All Answers' to see your score!
        """
    )
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")
    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)