File size: 12,459 Bytes
b27256b 10e9b7d 7821faf 4c200bf 7821faf 57bc7b8 b27256b 3a293e2 57bc7b8 3a293e2 b27256b b253f96 b27256b 57bc7b8 b27256b 3a293e2 57bc7b8 b27256b b253f96 b27256b b253f96 b27256b 57bc7b8 b27256b 57bc7b8 b27256b 57bc7b8 b27256b 3a293e2 57bc7b8 b27256b 57bc7b8 3a293e2 57bc7b8 3a293e2 57bc7b8 7821faf b27256b 7821faf 2c0ba2f 703ec74 3a293e2 b27256b 3a293e2 b27256b 3a293e2 b27256b 3a293e2 703ec74 188585a 7821faf 188585a 2c0ba2f 7821faf 703ec74 7821faf b27256b 3a293e2 57bc7b8 b27256b 188585a 2c0ba2f 57bc7b8 b27256b 57bc7b8 b27256b 57bc7b8 b27256b 57bc7b8 b27256b 703ec74 57bc7b8 3a293e2 57bc7b8 7821faf 57bc7b8 3a293e2 7821faf 188585a 2c0ba2f b27256b 7821faf 57bc7b8 188585a b27256b 7821faf b27256b 4c200bf b27256b f21f66c 2c0ba2f 703ec74 b27256b 703ec74 188585a 2c0ba2f 7821faf 703ec74 188585a 4c200bf 703ec74 57bc7b8 703ec74 57bc7b8 703ec74 7821faf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import requests
import os
import gradio as gr
import pandas as pd
import time
import re
import json
import wikipedia
import speech_recognition as sr
from pydub import AudioSegment
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_react_agent
from langchain.memory import ConversationSummaryMemory
from langchain.tools import Tool
from langchain.tools.python.tool import PythonREPLTool
from langchain_community.document_loaders import WikipediaLoader
from langchain.prompts import PromptTemplate
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# === TOOL: python_repl ===
repl_tool = PythonREPLTool(
name="python_repl",
description="A Python REPL for calculations and parsing. Input must be valid Python code, use print() to output results."
)
# === TOOL: file_saver ===
def download_and_save_file(args: dict) -> str:
try:
if isinstance(args, str):
args = json.loads(args)
url = args.get("url")
local_filename = args.get("local_filename")
if not url or not local_filename:
return "Error: Both 'url' and 'local_filename' must be provided."
response = requests.get(url, stream=True, timeout=30)
response.raise_for_status()
os.makedirs(os.path.dirname(local_filename) or '.', exist_ok=True)
with open(local_filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded successfully to {local_filename}"
except Exception as e:
return f"Error downloading file: {e}"
file_saver_tool = Tool(
name="file_saver",
description="Downloads a file from a URL and saves it as the given local filename. Input: JSON with 'url' and 'local_filename'.",
func=download_and_save_file,
)
# === TOOL: audio_transcriber_tool ===
def transcribe_audio_from_path(local_audio_path: str, language: str = "en-US") -> str:
r = sr.Recognizer()
temp_wav_path = "temp_audio_to_transcribe.wav"
transcribed_text = ""
try:
if local_audio_path.startswith("http://") or local_audio_path.startswith("https://"):
return "Error: Only local file paths allowed. Use 'file_saver' first."
if not os.path.exists(local_audio_path):
return f"Error: File not found: '{local_audio_path}'."
audio = AudioSegment.from_file(local_audio_path)
audio.export(temp_wav_path, format="wav")
with sr.AudioFile(temp_wav_path) as source:
audio_listened = r.record(source)
try:
transcribed_text = r.recognize_google(audio_listened, language=language)
except sr.UnknownValueError:
return "Could not understand audio."
except sr.RequestError as e:
return f"Could not request results from Google Speech Recognition; {e}"
except Exception as e:
return f"Error: {e}"
finally:
if os.path.exists(temp_wav_path):
os.remove(temp_wav_path)
return transcribed_text.strip()
audio_transcriber_tool = Tool(
name="audio_transcriber_tool",
description="Transcribes audio from a local file path to text. Input: path to audio file (e.g., 'myfile.mp3'). Use 'file_saver' to download first. Optionally set language.",
func=transcribe_audio_from_path,
)
# === TOOL: wikipedia_search_tool2 ===
def wiki_search(query: str) -> str:
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return formatted_search_docs
wikipedia_search_tool2 = Tool(
name="wikipedia_search_tool2",
description="Search Wikipedia for a query and return up to 2 results. Input: query string.",
func=wiki_search,
)
# === PROMPT ===
prompt = PromptTemplate(
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"],
template="""
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks.
STRICT FINAL ANSWER RULES:
- Final Answer must be a number, a few words, or a comma-separated list, as requested.
- No units or extra punctuation unless asked.
Your response must start with 'Thought:' and finish with 'Final Answer:'.
You have access to the following tools:
{tools}
Use this format:
Thought: [thinking]
Action: [tool_name]
Action Input: [input]
Observation: [result]
...
Thought: [done]
Final Answer: [concise answer]
{chat_history}
New input: {input}
---
{agent_scratchpad}
"""
)
# === AGENT ===
class BasicAgent:
def __init__(
self,
agent,
tools,
verbose=False,
handle_parsing_errors=True,
max_iterations=9,
memory=None
):
self.agent_obj = AgentExecutor(
agent=agent,
tools=tools,
verbose=verbose,
handle_parsing_errors=handle_parsing_errors,
max_iterations=max_iterations,
memory=memory
)
def __call__(self, question: str) -> str:
result = self.agent_obj.invoke(
{"input": question},
config={"configurable": {"session_id": "test-session"}},
)
return result['output']
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
openai_api_key = os.getenv("OPENAI_API_KEY")
if not openai_api_key:
print("OpenAI API key not found in environment variables.")
return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None
print(f"Using OpenAI API key: {openai_api_key[:4]}... (truncated for security)")
llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key)
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history")
summary_react_agent = create_react_agent(
llm=llm_client,
tools=[repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2],
prompt=prompt
)
try:
agent = BasicAgent(summary_react_agent, [repl_tool, file_saver_tool, audio_transcriber_tool, wikipedia_search_tool2], True, True, 30, summary_memory)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
full_question_for_agent = question_text
if file_name:
attachment_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}"
print(f"Running agent on task {task_id}: {full_question_for_agent}",flush=True)
try:
submitted_answer = agent(full_question_for_agent)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
time.sleep(1)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status)
cleaned_final_status = cleaned_final_status.strip()
results_df = pd.DataFrame(results_log)
return cleaned_final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and modify the code as needed.
2. Log in to your Hugging Face account below.
3. Click 'Run Evaluation & Submit All Answers' to see your score!
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |