File size: 5,218 Bytes
10e9b7d 6e92f6f 10e9b7d eccf8e4 3c4371f 6576efa 6e92f6f 5ee0d29 10e9b7d 6576efa 6e92f6f 5ee0d29 6e92f6f 5ee0d29 6e92f6f 5ee0d29 6e92f6f 5ee0d29 91cad6f 31243f4 6576efa 2d924bf 5ee0d29 2d924bf 6e92f6f 2d924bf f8e24f8 f86bd24 6e92f6f dc1160b 91cad6f f86bd24 5ee0d29 f86bd24 91cad6f f86bd24 4021bf3 5ee0d29 6576efa 7e4a06b 6576efa 3c4371f 7e4a06b 7d65c66 3c4371f 6e92f6f e80aab9 31243f4 6576efa 31243f4 6576efa 36ed51a 3c4371f eccf8e4 31243f4 7d65c66 31243f4 7d65c66 6576efa e80aab9 7d65c66 6576efa 31243f4 dc1160b f8e24f8 6576efa 31243f4 f8e24f8 6e92f6f 5ee0d29 f8e24f8 31243f4 7d65c66 6576efa 31243f4 6576efa 31243f4 6576efa 31243f4 6576efa e80aab9 7d65c66 e80aab9 31243f4 5ee0d29 6576efa 5ee0d29 6576efa e80aab9 6576efa 7d65c66 6576efa e80aab9 5ee0d29 e80aab9 dc1160b 6576efa dc1160b 6576efa 7e4a06b 31243f4 6576efa dc1160b e80aab9 6576efa e80aab9 6576efa 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import time
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, OpenAIServerModel
from smolagents.tools import DuckDuckGoSearchTool
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_QUESTION_LENGTH = 4000
# --- Reliable DuckDuckGo Tool using smolagents ---
class ReliableDuckDuckGoTool(DuckDuckGoSearchTool):
def run(self, query: str) -> str:
for attempt in range(3):
try:
return super().run(query)
except Exception as e:
if "rate" in str(e).lower():
print(f"[DuckDuckGo] Rate limit hit. Retrying ({attempt + 1}/3)...")
time.sleep(2 * (attempt + 1))
else:
raise e
raise RuntimeError("DuckDuckGo search failed after retries")
# --- Main Agent ---
class SmartGAIAAgent:
def __init__(self):
self.api_key = os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("Missing OPENAI_API_KEY")
self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key)
self.agent = CodeAgent(
tools=[ReliableDuckDuckGoTool()],
model=self.model,
add_base_tools=True
)
def truncate_question(self, question: str) -> str:
return question[:MAX_QUESTION_LENGTH]
def __call__(self, question: str) -> str:
try:
question = self.truncate_question(question)
return self.agent.run(question).strip()
except Exception as e:
print(f"Agent error: {e}")
return "error"
# --- Evaluation and Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = SmartGAIAAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
answers_payload = []
results_log = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question", "")
if not task_id or not question_text:
continue
if len(question_text) > MAX_QUESTION_LENGTH:
print(f"Skipping long question: {task_id}")
continue
if any(keyword in question_text.lower() for keyword in [
'attached', '.mp3', '.wav', '.png', '.jpg', '.jpeg',
'youtube', '.mp4', 'video', 'listen', 'watch'
]):
print(f"Skipping unsupported question: {task_id}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "No answers were submitted.", pd.DataFrame(results_log)
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
f"Message: {result_data.get('message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# 🧠 GAIA Agent Evaluation")
gr.Markdown("""
1. Log in to Hugging Face
2. Click 'Run Evaluation & Submit All Answers'
3. View your score on the leaderboard
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Status", lines=5)
results_table = gr.DataFrame(label="Evaluation Results")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |