File size: 4,639 Bytes
10e9b7d eccf8e4 3c4371f 6576efa 2d924bf 10e9b7d 6576efa f8e24f8 6576efa 2d924bf 91cad6f 31243f4 6576efa 2d924bf 91cad6f f8e24f8 2d924bf f8e24f8 f86bd24 91cad6f f86bd24 f8e24f8 6576efa f86bd24 91cad6f f86bd24 4021bf3 6576efa 7e4a06b 6576efa 3c4371f 7e4a06b 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 6576efa 31243f4 6576efa 36ed51a 6576efa 3c4371f eccf8e4 31243f4 7d65c66 31243f4 7d65c66 6576efa e80aab9 7d65c66 6576efa 31243f4 f8e24f8 6576efa 31243f4 f8e24f8 31243f4 7d65c66 6576efa 31243f4 6576efa 31243f4 6576efa 31243f4 6576efa e80aab9 7d65c66 e80aab9 31243f4 f8e24f8 6576efa f8e24f8 6576efa e80aab9 6576efa 7d65c66 6576efa e80aab9 6576efa e80aab9 6576efa 7e4a06b 31243f4 6576efa e80aab9 6576efa e80aab9 6576efa 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_QUESTION_LENGTH = 4000 # to avoid GPT-4 8k token limit
# --- Agent Definition using smolagents ---
class SmartGAIAAgent:
def __init__(self):
self.api_key = os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("Missing OPENAI_API_KEY")
self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key)
# Agent with DuckDuckGo + built-in Python interpreter
self.agent = CodeAgent(
tools=[DuckDuckGoSearchTool()],
model=self.model,
add_base_tools=True
)
def __call__(self, question: str) -> str:
try:
question = question[:MAX_QUESTION_LENGTH]
result = self.agent.run(question)
return result.strip()
except Exception as e:
print(f"Agent error: {e}")
return "error"
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = SmartGAIAAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Code link: {agent_code}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
answers_payload = []
results_log = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
# Skip invalid or long/multimodal questions
if not task_id or not question_text:
continue
if len(question_text) > MAX_QUESTION_LENGTH:
print(f"Skipping long question: {task_id}")
continue
if any(keyword in question_text.lower() for keyword in ['attached', '.mp3', '.wav', '.png', '.jpg', 'image']):
print(f"Skipping file/audio/image question: {task_id}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "No answers were submitted.", pd.DataFrame(results_log)
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\\n"
f"User: {result_data.get('username')}\\n"
f"Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\\n"
f"Message: {result_data.get('message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Agent Evaluation")
gr.Markdown("""
**Instructions:**
1. Log in to Hugging Face
2. Click 'Run Evaluation' to generate and submit answers
3. Wait for the results
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Status", lines=5)
results_table = gr.DataFrame(label="Results")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |