File size: 11,532 Bytes
10e9b7d 7821faf 448bb86 4c200bf 448bb86 2a1894a 57bc7b8 b27256b 3a293e2 57bc7b8 2a1894a 448bb86 b27256b 448bb86 b27256b 448bb86 b27256b 448bb86 b27256b 448bb86 b27256b 448bb86 2a1894a 448bb86 57bc7b8 2a1894a 57bc7b8 2a1894a 448bb86 2a1894a 448bb86 2a1894a 448bb86 57bc7b8 2a1894a 7821faf 2a1894a 7821faf 2c0ba2f 703ec74 2a1894a 3a293e2 448bb86 3a293e2 703ec74 188585a 448bb86 7821faf 188585a 2c0ba2f 7821faf 2a1894a 7821faf b27256b 3a293e2 57bc7b8 b27256b 2a1894a b27256b 188585a 448bb86 2c0ba2f 57bc7b8 448bb86 57bc7b8 448bb86 57bc7b8 2a1894a 448bb86 2a1894a 448bb86 57bc7b8 2a1894a 703ec74 57bc7b8 3a293e2 57bc7b8 7821faf 448bb86 57bc7b8 3a293e2 448bb86 7821faf 188585a 2c0ba2f b27256b 7821faf 448bb86 188585a 448bb86 b27256b 7821faf b27256b 4c200bf 448bb86 f21f66c 2c0ba2f 703ec74 448bb86 703ec74 448bb86 188585a 448bb86 2c0ba2f 448bb86 2c0ba2f 7821faf 448bb86 703ec74 188585a 4c200bf 703ec74 2a1894a 448bb86 703ec74 448bb86 2a1894a 703ec74 448bb86 703ec74 7821faf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import gradio as gr
import inspect
import pandas as pd
import importlib
from importlib import resources
import requests
import yaml
import numpy as np
from smolagents import (
CodeAgent,
DuckDuckGoSearchTool,
VisitWebpageTool,
WikipediaSearchTool,
Tool,
OpenAIServerModel,
SpeechToTextTool
)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Custom Tools ---
class GetTaskFileTool(Tool):
name = "get_task_file_tool"
description = """This tool downloads the file content associated with the given task_id if exists. Returns absolute file path"""
inputs = {
"task_id": {"type": "string", "description": "Task id"},
"file_name": {"type": "string", "description": "File name"},
}
output_type = "string"
def forward(self, task_id: str, file_name: str) -> str:
response = requests.get(f"{DEFAULT_API_URL}/files/{task_id}", timeout=15)
response.raise_for_status()
with open(file_name, 'wb') as file:
file.write(response.content)
return os.path.abspath(file_name)
class LoadXlsxFileTool(Tool):
name = "load_xlsx_file_tool"
description = """This tool loads xlsx file into pandas and returns it"""
inputs = {
"file_path": {"type": "string", "description": "File path"}
}
output_type = "object"
def forward(self, file_path: str) -> object:
return pd.read_excel(file_path)
class LoadTextFileTool(Tool):
name = "load_text_file_tool"
description = """This tool loads any text file"""
inputs = {
"file_path": {"type": "string", "description": "File path"}
}
output_type = "string"
def forward(self, file_path: str) -> object:
with open(file_path, 'r', encoding='utf-8') as file:
return file.read()
# --- Prompts ---
prompts = yaml.safe_load(
resources.files("smolagents.prompts").joinpath("code_agent.yaml").read_text()
)
prompts["system_prompt"] = (
"You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. "
+ prompts["system_prompt"]
)
# --- Agent Initialization ---
def init_agent():
openai_model = OpenAIServerModel(
model_id="gpt-4o", # or "gpt-4" etc.
api_key=os.getenv("OPENAI_API_KEY"),
temperature=0
)
agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaSearchTool(),
GetTaskFileTool(),
SpeechToTextTool(),
LoadXlsxFileTool(),
LoadTextFileTool()
],
model=openai_model,
prompt_templates=prompts,
max_steps=15,
additional_authorized_imports = ["pandas"]
)
return agent
# --- Main Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = init_agent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
print(question_text)
file_name = item.get("file_name")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent.run(
f"Task id: {task_id}. Task file: {file_name if file_name != '' else 'is absent'}. Task: " + question_text
)
if isinstance(submitted_answer, (np.integer, np.floating)):
submitted_answer = submitted_answer.item()
elif isinstance(submitted_answer, list):
submitted_answer = [x.item() if isinstance(x, (np.integer, np.floating)) else x for x in submitted_answer]
submitted_answer = str(submitted_answer)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |