File size: 11,532 Bytes
10e9b7d
7821faf
448bb86
4c200bf
448bb86
 
 
 
 
2a1894a
 
 
 
 
 
 
 
 
57bc7b8
b27256b
3a293e2
57bc7b8
2a1894a
448bb86
 
 
 
 
 
 
 
 
 
 
b27256b
448bb86
 
 
b27256b
448bb86
 
 
 
 
 
 
b27256b
448bb86
 
b27256b
448bb86
 
 
 
 
 
 
b27256b
448bb86
 
 
 
2a1894a
448bb86
 
57bc7b8
2a1894a
 
 
 
57bc7b8
2a1894a
448bb86
2a1894a
 
 
 
448bb86
 
 
 
 
 
 
 
 
 
 
2a1894a
448bb86
 
 
 
 
57bc7b8
2a1894a
 
 
7821faf
2a1894a
7821faf
 
 
2c0ba2f
 
703ec74
 
 
 
2a1894a
3a293e2
448bb86
3a293e2
 
 
703ec74
 
188585a
448bb86
7821faf
188585a
2c0ba2f
 
 
7821faf
2a1894a
 
7821faf
b27256b
3a293e2
57bc7b8
b27256b
2a1894a
 
 
b27256b
 
 
188585a
448bb86
2c0ba2f
 
57bc7b8
 
 
 
448bb86
57bc7b8
448bb86
 
 
57bc7b8
2a1894a
 
 
448bb86
2a1894a
448bb86
 
 
57bc7b8
 
 
2a1894a
 
703ec74
57bc7b8
3a293e2
57bc7b8
7821faf
448bb86
57bc7b8
3a293e2
 
 
448bb86
7821faf
188585a
2c0ba2f
 
 
 
 
 
 
 
 
 
b27256b
7821faf
448bb86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188585a
448bb86
b27256b
7821faf
b27256b
4c200bf
448bb86
f21f66c
2c0ba2f
703ec74
 
 
448bb86
 
 
 
 
 
 
703ec74
 
448bb86
188585a
448bb86
2c0ba2f
448bb86
2c0ba2f
7821faf
448bb86
703ec74
 
 
 
188585a
4c200bf
703ec74
 
2a1894a
448bb86
703ec74
 
 
 
 
448bb86
2a1894a
703ec74
 
 
 
 
448bb86
703ec74
7821faf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import gradio as gr
import inspect
import pandas as pd
import importlib
from importlib import resources
import requests
import yaml
import numpy as np
from smolagents import (
    CodeAgent, 
    DuckDuckGoSearchTool, 
    VisitWebpageTool, 
    WikipediaSearchTool, 
    Tool, 
    OpenAIServerModel, 
    SpeechToTextTool
)

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Custom Tools ---
class GetTaskFileTool(Tool):
    name = "get_task_file_tool"
    description = """This tool downloads the file content associated with the given task_id if exists. Returns absolute file path"""
    inputs = {
        "task_id": {"type": "string", "description": "Task id"},
        "file_name": {"type": "string", "description": "File name"},
    }
    output_type = "string"

    def forward(self, task_id: str, file_name: str) -> str:
        response = requests.get(f"{DEFAULT_API_URL}/files/{task_id}", timeout=15)
        response.raise_for_status()
        with open(file_name, 'wb') as file:
            file.write(response.content)
        return os.path.abspath(file_name)

class LoadXlsxFileTool(Tool):
    name = "load_xlsx_file_tool"
    description = """This tool loads xlsx file into pandas and returns it"""
    inputs = {
        "file_path": {"type": "string", "description": "File path"}
    }
    output_type = "object"

    def forward(self, file_path: str) -> object:
        return pd.read_excel(file_path)

class LoadTextFileTool(Tool):
    name = "load_text_file_tool"
    description = """This tool loads any text file"""
    inputs = {
        "file_path": {"type": "string", "description": "File path"}
    }
    output_type = "string"

    def forward(self, file_path: str) -> object:
        with open(file_path, 'r', encoding='utf-8') as file:
            return file.read()

# --- Prompts ---
prompts = yaml.safe_load(
    resources.files("smolagents.prompts").joinpath("code_agent.yaml").read_text()
)
prompts["system_prompt"] = (
    "You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. "
    + prompts["system_prompt"]
)

# --- Agent Initialization ---
def init_agent():
    openai_model = OpenAIServerModel(
        model_id="gpt-4o",  # or "gpt-4" etc.
        api_key=os.getenv("OPENAI_API_KEY"),
        temperature=0
    )
    agent = CodeAgent(
        tools=[
            DuckDuckGoSearchTool(),
            VisitWebpageTool(),
            WikipediaSearchTool(),
            GetTaskFileTool(),
            SpeechToTextTool(),
            LoadXlsxFileTool(),
            LoadTextFileTool()
        ],
        model=openai_model,
        prompt_templates=prompts,
        max_steps=15,
        additional_authorized_imports = ["pandas"]
    )
    return agent

# --- Main Runner ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = init_agent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        print(question_text)
        file_name = item.get("file_name")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent.run(
                f"Task id: {task_id}. Task file: {file_name if file_name != '' else 'is absent'}. Task: " + question_text
            )
            if isinstance(submitted_answer, (np.integer, np.floating)):
                submitted_answer = submitted_answer.item()
            elif isinstance(submitted_answer, list):
                submitted_answer = [x.item() if isinstance(x, (np.integer, np.floating)) else x for x in submitted_answer]
            submitted_answer = str(submitted_answer)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)