|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import openai |
|
|
|
from smolagents.agents import ToolCallingAgent |
|
from langchain_community.tools import PythonREPLTool as CodeInterpreterTool |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class SmartGAIAAgent: |
|
def __init__(self): |
|
self.api_key = os.getenv("OPENAI_API_KEY") |
|
if not self.api_key: |
|
raise ValueError("Missing OPENAI_API_KEY") |
|
openai.api_key = self.api_key |
|
|
|
|
|
self.search = DuckDuckGoSearchRun() |
|
self.calculator = CodeInterpreterTool() |
|
|
|
|
|
self.agent = ToolCallingAgent( |
|
tools=[self.search, self.calculator], |
|
model="gpt-4", |
|
max_steps=8, |
|
system_prompt=( |
|
"You are a helpful assistant solving complex reasoning and factual questions. " |
|
"Use tools only if needed. Return only the final answer. Do not add explanations or formatting." |
|
) |
|
) |
|
|
|
def __call__(self, question: str) -> str: |
|
try: |
|
result = self.agent.run(question) |
|
return result.strip() |
|
except Exception as e: |
|
print(f"Agent error: {e}") |
|
return "error" |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
try: |
|
agent = SmartGAIAAgent() |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Code link: {agent_code}") |
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
answers_payload = [] |
|
results_log = [] |
|
|
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or not question_text: |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer |
|
}) |
|
except Exception as e: |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
return "No answers were submitted.", pd.DataFrame(results_log) |
|
|
|
submission_data = { |
|
"username": username, |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score')}% " |
|
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n" |
|
f"Message: {result_data.get('message')}" |
|
) |
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"Submission failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GAIA Agent Evaluation") |
|
gr.Markdown(""" |
|
**Instructions:** |
|
1. Log in to Hugging Face |
|
2. Click 'Run Evaluation' to generate and submit answers |
|
3. Wait for the results |
|
""") |
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Submission Status", lines=5) |
|
results_table = gr.DataFrame(label="Results") |
|
|
|
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) |
|
|
|
if __name__ == "__main__": |
|
print("Launching Gradio Interface...") |
|
demo.launch(debug=True, share=False) |