dawid-lorek's picture
Update agent.py
9ec230d verified
raw
history blame
3.04 kB
import os
import re
import io
import base64
import requests
import pandas as pd
from word2number import w2n
from openai import OpenAI
from langchain_community.tools import DuckDuckGoSearchRun
class GaiaAgent:
def __init__(self):
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
self.api_url = "https://agents-course-unit4-scoring.hf.space"
self.search_tool = DuckDuckGoSearchRun()
def fetch_file(self, task_id):
try:
url = f"{self.api_url}/files/{task_id}"
r = requests.get(url, timeout=10)
r.raise_for_status()
return r.content, r.headers.get("Content-Type", "")
except:
return None, None
def ask(self, prompt):
try:
r = self.client.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0,
timeout=30
)
return r.choices[0].message.content.strip()
except:
return "[ERROR: ask failed]"
def search_context(self, query):
try:
result = self.search_tool.run(query)
return result[:2000] if result else "[NO WEB RESULT]"
except:
return "[WEB ERROR]"
def handle_file(self, content, ctype, question):
try:
if "image" in ctype:
b64 = base64.b64encode(content).decode("utf-8")
result = self.client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You're a chess assistant. Reply only with the best move in algebraic notation (e.g., Qd1#)."},
{"role": "user", "content": [
{"type": "text", "text": question},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}}
]}
]
)
return result.choices[0].message.content.strip()
if "audio" in ctype:
with open("/tmp/audio.mp3", "wb") as f:
f.write(content)
result = self.client.audio.transcriptions.create(model="whisper-1", file=open("/tmp/audio.mp3", "rb"))
return result.text
if "excel" in ctype:
df = pd.read_excel(io.BytesIO(content), engine="openpyxl")
df.columns = [c.lower().strip() for c in df.columns]
if 'category' in df.columns and 'sales' in df.columns:
df = df.dropna(subset=['category', 'sales'])
df = df[df['category'].str.lower() == 'food']
df['sales'] = pd.to_numeric(df['sales'], errors='coerce')
return f"${df['sales'].sum():.2f}"
return "[NO FOOD SALES DATA]"
return content.decode("utf-8", errors="ignore")[:3000]
except Exception as e: