|
import os |
|
import re |
|
import io |
|
import base64 |
|
import requests |
|
import pandas as pd |
|
from word2number import w2n |
|
from openai import OpenAI |
|
from langchain_community.tools import DuckDuckGoSearchRun |
|
|
|
class GaiaAgent: |
|
def __init__(self): |
|
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) |
|
self.api_url = "https://agents-course-unit4-scoring.hf.space" |
|
self.search_tool = DuckDuckGoSearchRun() |
|
|
|
def fetch_file(self, task_id): |
|
try: |
|
url = f"{self.api_url}/files/{task_id}" |
|
r = requests.get(url, timeout=10) |
|
r.raise_for_status() |
|
return r.content, r.headers.get("Content-Type", "") |
|
except: |
|
return None, None |
|
|
|
def ask(self, prompt): |
|
try: |
|
r = self.client.chat.completions.create( |
|
model="gpt-4-turbo", |
|
messages=[{"role": "user", "content": prompt}], |
|
temperature=0, |
|
timeout=30 |
|
) |
|
return r.choices[0].message.content.strip() |
|
except: |
|
return "[ERROR: ask failed]" |
|
|
|
def search_context(self, query): |
|
try: |
|
result = self.search_tool.run(query) |
|
return result[:2000] if result else "[NO WEB RESULT]" |
|
except: |
|
return "[WEB ERROR]" |
|
|
|
def handle_file(self, content, ctype, question): |
|
try: |
|
if "image" in ctype: |
|
b64 = base64.b64encode(content).decode("utf-8") |
|
result = self.client.chat.completions.create( |
|
model="gpt-4o", |
|
messages=[ |
|
{"role": "system", "content": "You're a chess assistant. Reply only with the best move in algebraic notation (e.g., Qd1#)."}, |
|
{"role": "user", "content": [ |
|
{"type": "text", "text": question}, |
|
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64}"}} |
|
]} |
|
] |
|
) |
|
return result.choices[0].message.content.strip() |
|
if "audio" in ctype: |
|
with open("/tmp/audio.mp3", "wb") as f: |
|
f.write(content) |
|
result = self.client.audio.transcriptions.create(model="whisper-1", file=open("/tmp/audio.mp3", "rb")) |
|
return result.text |
|
if "excel" in ctype: |
|
df = pd.read_excel(io.BytesIO(content), engine="openpyxl") |
|
df.columns = [c.lower().strip() for c in df.columns] |
|
if 'category' in df.columns and 'sales' in df.columns: |
|
df = df.dropna(subset=['category', 'sales']) |
|
df = df[df['category'].str.lower() == 'food'] |
|
df['sales'] = pd.to_numeric(df['sales'], errors='coerce') |
|
return f"${df['sales'].sum():.2f}" |
|
return "[NO FOOD SALES DATA]" |
|
return content.decode("utf-8", errors="ignore")[:3000] |
|
except Exception as e: |
|
|
|
|