dawid-lorek's picture
Update app.py
5ee0d29 verified
raw
history blame
5.22 kB
import os
import time
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, OpenAIServerModel
from smolagents.tools import DuckDuckGoSearchTool
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
MAX_QUESTION_LENGTH = 4000
# --- Reliable DuckDuckGo Tool using smolagents ---
class ReliableDuckDuckGoTool(DuckDuckGoSearchTool):
def run(self, query: str) -> str:
for attempt in range(3):
try:
return super().run(query)
except Exception as e:
if "rate" in str(e).lower():
print(f"[DuckDuckGo] Rate limit hit. Retrying ({attempt + 1}/3)...")
time.sleep(2 * (attempt + 1))
else:
raise e
raise RuntimeError("DuckDuckGo search failed after retries")
# --- Main Agent ---
class SmartGAIAAgent:
def __init__(self):
self.api_key = os.getenv("OPENAI_API_KEY")
if not self.api_key:
raise ValueError("Missing OPENAI_API_KEY")
self.model = OpenAIServerModel(model_id="gpt-4", api_key=self.api_key)
self.agent = CodeAgent(
tools=[ReliableDuckDuckGoTool()],
model=self.model,
add_base_tools=True
)
def truncate_question(self, question: str) -> str:
return question[:MAX_QUESTION_LENGTH]
def __call__(self, question: str) -> str:
try:
question = self.truncate_question(question)
return self.agent.run(question).strip()
except Exception as e:
print(f"Agent error: {e}")
return "error"
# --- Evaluation and Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
return "Please Login to Hugging Face with the button.", None
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
agent = SmartGAIAAgent()
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
except Exception as e:
return f"Error fetching questions: {e}", None
answers_payload = []
results_log = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question", "")
if not task_id or not question_text:
continue
if len(question_text) > MAX_QUESTION_LENGTH:
print(f"Skipping long question: {task_id}")
continue
if any(keyword in question_text.lower() for keyword in [
'attached', '.mp3', '.wav', '.png', '.jpg', '.jpeg',
'youtube', '.mp4', 'video', 'listen', 'watch'
]):
print(f"Skipping unsupported question: {task_id}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"ERROR: {e}"
})
if not answers_payload:
return "No answers were submitted.", pd.DataFrame(results_log)
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
f"Message: {result_data.get('message')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# 🧠 GAIA Agent Evaluation")
gr.Markdown("""
1. Log in to Hugging Face
2. Click 'Run Evaluation & Submit All Answers'
3. View your score on the leaderboard
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Submission Status", lines=5)
results_table = gr.DataFrame(label="Evaluation Results")
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
if __name__ == "__main__":
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)