|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
import time |
|
import re |
|
|
|
from langchain_openai import ChatOpenAI |
|
from langchain.prompts import PromptTemplate |
|
from langchain.agents import AgentExecutor, create_react_agent |
|
from langchain.memory import ConversationSummaryMemory |
|
from typing import List, Optional |
|
|
|
|
|
from helper import repl_tool, file_saver_tool, audio_transcriber_tool, gemini_multimodal_tool, wikipedia_search_tool2 |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
prompt = PromptTemplate( |
|
input_variables=["input", "agent_scratchpad", "chat_history", "tool_names"], |
|
template=""" |
|
You are a smart and helpful AI Agent/Assistant that excels at fact-based reasoning. You are allowed and encouraged to use one or more tools as needed to answer complex questions and perform tasks. |
|
[ ...cut for brevity: insert your strict format rules and examples here ... ] |
|
{chat_history} |
|
New input: {input} |
|
--- |
|
{agent_scratchpad} |
|
""" |
|
) |
|
|
|
|
|
class BasicAgent: |
|
def __init__( |
|
self, |
|
agent, tools: List, verbose: bool = False, handle_parsing_errors: bool = True, |
|
max_iterations: int = 9, memory: Optional[ConversationSummaryMemory] = None |
|
): |
|
self.agent = agent |
|
self.tools = tools |
|
self.verbose = verbose |
|
self.handle_parsing_errors = handle_parsing_errors |
|
self.max_iterations = max_iterations |
|
self.memory = memory |
|
self.agent_obj = AgentExecutor( |
|
agent=self.agent, |
|
tools=self.tools, |
|
verbose=self.verbose, |
|
handle_parsing_errors=self.handle_parsing_errors, |
|
max_iterations=self.max_iterations, |
|
memory=self.memory |
|
) |
|
|
|
def __call__(self, question: str) -> str: |
|
result = self.agent_obj.invoke( |
|
{"input": question}, |
|
config={"configurable": {"session_id": "test-session"}}, |
|
) |
|
return result['output'] |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
if not openai_api_key: |
|
print("OpenAI API key not found in environment variables.") |
|
return "OpenAI API key not found. Please set OPENAI_API_KEY environment variable.", None |
|
|
|
|
|
llm_client = ChatOpenAI(model='gpt-4o', temperature=0, api_key=openai_api_key) |
|
|
|
|
|
tools = [ |
|
repl_tool, |
|
file_saver_tool, |
|
audio_transcriber_tool, |
|
gemini_multimodal_tool, |
|
wikipedia_search_tool2 |
|
] |
|
|
|
summary_memory = ConversationSummaryMemory(llm=llm_client, memory_key="chat_history") |
|
|
|
summary_react_agent = create_react_agent( |
|
llm=llm_client, |
|
tools=tools, |
|
prompt=prompt |
|
) |
|
|
|
|
|
try: |
|
agent = BasicAgent(summary_react_agent, tools, True, True, 30, summary_memory) |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
file_name = item.get("file_name") |
|
full_question_for_agent = question_text |
|
if file_name: |
|
attachment_url = f"{DEFAULT_API_URL}/files/{task_id}" |
|
full_question_for_agent += f"\n\nAttachment '{file_name}' available at EXACT URL: {attachment_url}" |
|
print(f"Running agent on task {task_id}: {full_question_for_agent}", flush=True) |
|
try: |
|
submitted_answer = agent(full_question_for_agent) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
time.sleep(2) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
cleaned_final_status = re.sub(r'[^\x20-\x7E\n\r\t]+', '', final_status).strip() |
|
results_df = pd.DataFrame(results_log) |
|
return cleaned_final_status, results_df |
|
except Exception as e: |
|
print(f"Error submitting answers: {e}") |
|
results_df = pd.DataFrame(results_log) |
|
return f"Submission Failed: {e}", results_df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Log in to your Hugging Face account using the button below. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Note:** Only OpenAI API key is needed! |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |