Spaces:
Paused
Paused
| pipeline_tag: sentence-similarity | |
| tags: | |
| - sentence-transformers | |
| - feature-extraction | |
| - sentence-similarity | |
| - transformers | |
| library_name: generic | |
| language: | |
| - vi | |
| widget: | |
| - source_sentence: Làm thế nào Đại học Bách khoa Hà Nội thu hút sinh viên quốc tế? | |
| sentences: | |
| - >- | |
| Đại học Bách khoa Hà Nội đã phát triển các chương trình đào tạo bằng tiếng | |
| Anh để làm cho việc học tại đây dễ dàng hơn cho sinh viên quốc tế. | |
| - >- | |
| Môi trường học tập đa dạng và sự hỗ trợ đầy đủ cho sinh viên quốc tế tại Đại | |
| học Bách khoa Hà Nội giúp họ thích nghi nhanh chóng. | |
| - Hà Nội có khí hậu mát mẻ vào mùa thu. | |
| - Các món ăn ở Hà Nội rất ngon và đa dạng. | |
| license: apache-2.0 | |
| # bkai-foundation-models/vietnamese-bi-encoder | |
| This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
| We train the model on a merged training dataset that consists of: | |
| - MS Macro (translated into Vietnamese) | |
| - SQuAD v2 (translated into Vietnamese) | |
| - 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge | |
| We use [phobert-base-v2](https://github.com/VinAIResearch/PhoBERT) as the pre-trained backbone. | |
| Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge: | |
| | Pretrained Model | Training Datasets | Acc@1 | Acc@10 | Acc@100 | Pre@10 | MRR@10 | | |
| |-------------------------------|---------------------------------------|:------------:|:-------------:|:--------------:|:-------------:|:-------------:| | |
| | [Vietnamese-SBERT](https://huggingface.co/keepitreal/vietnamese-sbert) | - | 32.34 | 52.97 | 89.84 | 7.05 | 45.30 | | |
| | PhoBERT-base-v2 | MSMACRO | 47.81 | 77.19 | 92.34 | 7.72 | 58.37 | | |
| | PhoBERT-base-v2 | MSMACRO + SQuADv2.0 + 80% Zalo | 73.28 | 93.59 | 98.85 | 9.36 | 80.73 | | |
| <!--- Describe your model here --> | |
| ## Usage (Sentence-Transformers) | |
| Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
| ``` | |
| pip install -U sentence-transformers | |
| ``` | |
| Then you can use the model like this: | |
| ```python | |
| from sentence_transformers import SentenceTransformer | |
| # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! | |
| sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."] | |
| model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder') | |
| embeddings = model.encode(sentences) | |
| print(embeddings) | |
| ``` | |
| ## Usage (Widget HuggingFace) | |
| The widget use custom pipeline on top of the default pipeline by adding additional word segmenter before PhobertTokenizer. So you do not need to segment words before using the API: | |
| An example could be seen in Hosted inference API. | |
| ## Usage (HuggingFace Transformers) | |
| Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | |
| ```python | |
| from transformers import AutoTokenizer, AutoModel | |
| import torch | |
| #Mean Pooling - Take attention mask into account for correct averaging | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| # Sentences we want sentence embeddings, we could use pyvi, underthesea, RDRSegment to segment words | |
| sentences = ['Cô ấy là một người vui_tính .', 'Cô ấy cười nói suốt cả ngày .'] | |
| # Load model from HuggingFace Hub | |
| tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') | |
| model = AutoModel.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') | |
| # Tokenize sentences | |
| encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
| # Compute token embeddings | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| # Perform pooling. In this case, mean pooling. | |
| sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
| print("Sentence embeddings:") | |
| print(sentence_embeddings) | |
| ``` | |
| ## Training | |
| The model was trained with the parameters: | |
| **DataLoader**: | |
| `torch.utils.data.dataloader.DataLoader` of length 17584 with parameters: | |
| ``` | |
| {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | |
| ``` | |
| **Loss**: | |
| `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: | |
| ``` | |
| {'scale': 20.0, 'similarity_fct': 'cos_sim'} | |
| ``` | |
| Parameters of the fit()-Method: | |
| ``` | |
| { | |
| "epochs": 15, | |
| "evaluation_steps": 0, | |
| "evaluator": "NoneType", | |
| "max_grad_norm": 1, | |
| "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", | |
| "optimizer_params": { | |
| "lr": 2e-05 | |
| }, | |
| "scheduler": "WarmupLinear", | |
| "steps_per_epoch": null, | |
| "warmup_steps": 1000, | |
| "weight_decay": 0.01 | |
| } | |
| ``` | |
| ## Full Model Architecture | |
| ``` | |
| SentenceTransformer( | |
| (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel | |
| (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) | |
| ) | |
| ``` | |
| ### Please cite our manuscript if this dataset is used for your work | |
| ``` | |
| @article{duc2024towards, | |
| title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models}, | |
| author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang}, | |
| journal={arXiv preprint arXiv:2403.01616}, | |
| year={2024} | |
| } | |
| ``` |