Spaces:
Sleeping
Sleeping
File size: 27,897 Bytes
3680540 7f188a6 3680540 7f188a6 c692452 7f188a6 3680540 c692452 7f188a6 3680540 c692452 3680540 c692452 3680540 c692452 7f188a6 3680540 c692452 3680540 c692452 3680540 c692452 3680540 c692452 3680540 c692452 7f188a6 c692452 7f188a6 c692452 3680540 7f188a6 3680540 c692452 3680540 c692452 3680540 c692452 3680540 c692452 7f188a6 3680540 c692452 3680540 c692452 3680540 c692452 3680540 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 3680540 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 3680540 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 3680540 c692452 3680540 c692452 7f188a6 c692452 7f188a6 c692452 7f188a6 c692452 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 |
import streamlit as st
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from transformers import CLIPModel
from transformers.models.clip import CLIPModel
from PIL import Image
import numpy as np
import io
import base64
import cv2
import matplotlib.pyplot as plt
from peft import PeftModel
from unsloth import FastVisionModel
import os
import tempfile
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# App title and description
st.set_page_config(
page_title="Deepfake Analyzer",
layout="wide",
page_icon="π"
)
# Main title and description
st.title("Advanced Deepfake Image Analyzer")
st.markdown("Analyze images for deepfake manipulation with multi-stage analysis")
# Check for GPU availability
def check_gpu():
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_properties(0)
st.sidebar.success(f"β
GPU available: {gpu_info.name} ({gpu_info.total_memory / (1024**3):.2f} GB)")
return True
else:
st.sidebar.warning("β οΈ No GPU detected. Analysis will be slower.")
return False
# Sidebar components
st.sidebar.title("Options")
# Temperature slider
temperature = st.sidebar.slider(
"Temperature",
min_value=0.1,
max_value=1.0,
value=0.7,
step=0.1,
help="Higher values make output more random, lower values more deterministic"
)
# Max response length slider
max_tokens = st.sidebar.slider(
"Maximum Response Length",
min_value=100,
max_value=1000,
value=500,
step=50,
help="The maximum number of tokens in the response"
)
# Custom instruction text area in sidebar
custom_instruction = st.sidebar.text_area(
"Custom Instructions (Advanced)",
value="Focus on analyzing the highlighted regions from the GradCAM visualization. Examine facial inconsistencies, lighting irregularities, and other artifacts visible in the heat map.",
help="Add specific instructions for the LLM analysis"
)
# About section in sidebar
st.sidebar.markdown("---")
st.sidebar.subheader("About")
st.sidebar.markdown("""
This analyzer performs multi-stage detection:
1. **Initial Detection**: CLIP-based classifier
2. **GradCAM Visualization**: Highlights suspicious regions
3. **LLM Analysis**: Fine-tuned Llama 3.2 Vision provides detailed explanations
The system looks for:
- Facial inconsistencies
- Unnatural movements
- Lighting issues
- Texture anomalies
- Edge artifacts
- Blending problems
""")
# ----- GradCAM Implementation -----
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
self.image = image
self.transform = transform
self.face_only = face_only
self.dataset_name = dataset_name
# Load face detector
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def __len__(self):
return 1 # Only one image
def detect_face(self, image_np):
"""Detect face in image and return the face region"""
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
# If no face is detected, use the whole image
if len(faces) == 0:
st.info("No face detected, using whole image for analysis")
h, w = image_np.shape[:2]
return (0, 0, w, h), image_np
# Get the largest face
if len(faces) > 1:
# Choose the largest face by area
areas = [w*h for (x, y, w, h) in faces]
largest_idx = np.argmax(areas)
x, y, w, h = faces[largest_idx]
else:
x, y, w, h = faces[0]
# Add padding around the face (5% on each side)
padding_x = int(w * 0.05)
padding_y = int(h * 0.05)
# Ensure padding doesn't go outside image bounds
x1 = max(0, x - padding_x)
y1 = max(0, y - padding_y)
x2 = min(image_np.shape[1], x + w + padding_x)
y2 = min(image_np.shape[0], y + h + padding_y)
# Extract the face region
face_img = image_np[y1:y2, x1:x2]
return (x1, y1, x2-x1, y2-y1), face_img
def __getitem__(self, idx):
image_np = np.array(self.image)
label = 0 # Default label; will be overridden by prediction
# Store original image for visualization
original_image = self.image.copy()
# Detect face if required
if self.face_only:
face_box, face_img_np = self.detect_face(image_np)
face_img = Image.fromarray(face_img_np)
# Apply transform to face image
if self.transform:
face_tensor = self.transform(face_img)
else:
face_tensor = transforms.ToTensor()(face_img)
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
else:
# Process the whole image
if self.transform:
image_tensor = self.transform(self.image)
else:
image_tensor = transforms.ToTensor()(self.image)
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
self._register_hooks()
def _register_hooks(self):
def forward_hook(module, input, output):
if isinstance(output, tuple):
self.activations = output[0]
else:
self.activations = output
def backward_hook(module, grad_in, grad_out):
if isinstance(grad_out, tuple):
self.gradients = grad_out[0]
else:
self.gradients = grad_out
layer = dict([*self.model.named_modules()])[self.target_layer]
layer.register_forward_hook(forward_hook)
layer.register_backward_hook(backward_hook)
def generate(self, input_tensor, class_idx):
self.model.zero_grad()
try:
# Use only the vision part of the model for gradient calculation
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
# Get the pooler output
features = vision_outputs.pooler_output
# Create a dummy gradient for the feature based on the class idx
one_hot = torch.zeros_like(features)
one_hot[0, class_idx] = 1
# Manually backpropagate
features.backward(gradient=one_hot)
# Check for None values
if self.gradients is None or self.activations is None:
st.warning("Warning: Gradients or activations are None. Using fallback CAM.")
return np.ones((14, 14), dtype=np.float32) * 0.5
# Process gradients and activations for transformer-based model
gradients = self.gradients.cpu().detach().numpy()
activations = self.activations.cpu().detach().numpy()
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
seq_len = activations.shape[1]
# CLIP ViT typically has 196 patch tokens (14Γ14) + 1 class token = 197
if seq_len >= 197:
# Skip the class token (first token) and reshape the patch tokens into a square
patch_tokens = activations[0, 1:197, :] # Remove the class token
# Take the mean across the hidden dimension
token_importance = np.mean(np.abs(patch_tokens), axis=1)
# Reshape to the expected grid size (14Γ14 for CLIP ViT)
cam = token_importance.reshape(14, 14)
else:
# Try to find factors close to a square
side_len = int(np.sqrt(seq_len))
# Use the mean across features as importance
token_importance = np.mean(np.abs(activations[0]), axis=1)
# Create as square-like shape as possible
cam = np.zeros((side_len, side_len))
# Fill the cam with available values
flat_cam = cam.flatten()
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
cam = flat_cam.reshape(side_len, side_len)
else:
# Fallback
st.info("Using fallback CAM shape (14x14)")
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
# Ensure we have valid values
cam = np.maximum(cam, 0)
if np.max(cam) > 0:
cam = cam / np.max(cam)
return cam
except Exception as e:
st.error(f"Error in GradCAM.generate: {str(e)}")
return np.ones((14, 14), dtype=np.float32) * 0.5
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
"""Overlay the CAM on the image"""
if face_box is not None:
x, y, w, h = face_box
# Create a mask for the entire image (all zeros initially)
img_np = np.array(image)
full_h, full_w = img_np.shape[:2]
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
# Resize CAM to match face region
face_cam = cv2.resize(cam, (w, h))
# Copy the face CAM into the full image CAM at the face position
full_cam[y:y+h, x:x+w] = face_cam
# Convert full CAM to image
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
cam_colormap = (cam_colormap * 255).astype(np.uint8)
else:
# Resize CAM to match image dimensions
img_np = np.array(image)
h, w = img_np.shape[:2]
cam_resized = cv2.resize(cam, (w, h))
# Apply colormap
cam_colormap = plt.cm.jet(cam_resized)[:, :, :3] # Apply colormap
cam_colormap = (cam_colormap * 255).astype(np.uint8)
# Blend the original image with the colormap
img_np_float = img_np.astype(float) / 255.0
cam_colormap_float = cam_colormap.astype(float) / 255.0
blended = img_np_float * (1 - alpha) + cam_colormap_float * alpha
blended = (blended * 255).astype(np.uint8)
return Image.fromarray(blended)
def save_comparison(image, cam, overlay, face_box=None):
"""Create a side-by-side comparison of the original, CAM, and overlay"""
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Original Image
axes[0].imshow(image)
axes[0].set_title("Original")
if face_box is not None:
x, y, w, h = face_box
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
axes[0].add_patch(rect)
axes[0].axis("off")
# CAM
if face_box is not None:
# Create a full image CAM that highlights only the face
img_np = np.array(image)
h, w = img_np.shape[:2]
full_cam = np.zeros((h, w))
x, y, fw, fh = face_box
# Resize CAM to face size
face_cam = cv2.resize(cam, (fw, fh))
# Place it in the right position
full_cam[y:y+fh, x:x+fw] = face_cam
axes[1].imshow(full_cam, cmap="jet")
else:
cam_resized = cv2.resize(cam, (image.width, image.height))
axes[1].imshow(cam_resized, cmap="jet")
axes[1].set_title("CAM")
axes[1].axis("off")
# Overlay
axes[2].imshow(overlay)
axes[2].set_title("Overlay")
axes[2].axis("off")
plt.tight_layout()
# Convert plot to PIL Image for Streamlit display
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
return Image.open(buf)
# Function to load GradCAM CLIP model
@st.cache_resource
def load_clip_model():
with st.spinner("Loading CLIP model for GradCAM..."):
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
# Apply a simple classification head
model.classification_head = nn.Linear(1024, 2)
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
model.classification_head.bias.data.zero_()
model.eval()
return model
def get_target_layer_clip(model):
"""Get the target layer for GradCAM"""
return "vision_model.encoder.layers.23"
def process_image_with_gradcam(image, model, device, pred_class):
"""Process an image with GradCAM"""
# Set up transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
# Create dataset for the single image
dataset = ImageDataset(image, transform=transform, face_only=True)
# Custom collate function
def custom_collate(batch):
tensors = [item[0] for item in batch]
labels = [item[1] for item in batch]
paths = [item[2] for item in batch]
images = [item[3] for item in batch]
face_boxes = [item[4] for item in batch]
dataset_names = [item[5] for item in batch]
tensors = torch.stack(tensors)
labels = torch.tensor(labels)
return tensors, labels, paths, images, face_boxes, dataset_names
# Create dataloader
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=custom_collate)
# Extract the batch
for batch in dataloader:
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
original_image = original_images[0]
face_box = face_boxes[0]
# Move tensors and model to device
input_tensor = input_tensor.to(device)
model = model.to(device)
try:
# Create GradCAM extractor
target_layer = get_target_layer_clip(model)
cam_extractor = GradCAM(model, target_layer)
# Generate CAM
cam = cam_extractor.generate(input_tensor, pred_class)
# Create visualizations
overlay = overlay_cam_on_image(original_image, cam, face_box)
comparison = save_comparison(original_image, cam, overlay, face_box)
# Return results
return cam, overlay, comparison, face_box
except Exception as e:
st.error(f"Error processing image with GradCAM: {str(e)}")
# Return default values
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
comparison = save_comparison(original_image, default_cam, overlay, face_box)
return default_cam, overlay, comparison, face_box
# ----- Fine-tuned Vision LLM -----
# Function to fix cross-attention masks
def fix_cross_attention_mask(inputs):
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
visual_features = 6404 # Critical dimension
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
device=inputs['cross_attention_mask'].device)
inputs['cross_attention_mask'] = new_mask
st.success("Fixed cross-attention mask dimensions")
return inputs
# Load model function
@st.cache_resource
def load_llm_model():
with st.spinner("Loading LLM vision model... This may take a few minutes. Please be patient..."):
try:
# Check for GPU
has_gpu = check_gpu()
# Load base model and tokenizer using Unsloth
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
model, tokenizer = FastVisionModel.from_pretrained(
base_model_id,
load_in_4bit=True,
)
# Load the adapter
adapter_id = "saakshigupta/deepfake-explainer-1"
model = PeftModel.from_pretrained(model, adapter_id)
# Set to inference mode
FastVisionModel.for_inference(model)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
# Analyze image function
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
# Create a prompt that includes GradCAM information
if custom_instruction.strip():
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
else:
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious."
# Format the message to include both the original image and the GradCAM visualization
messages = [
{"role": "user", "content": [
{"type": "image", "image": image}, # Original image
{"type": "image", "image": gradcam_overlay}, # GradCAM overlay
{"type": "text", "text": full_prompt}
]}
]
# Apply chat template
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
# Process with image
inputs = tokenizer(
[image, gradcam_overlay], # Send both images
input_text,
add_special_tokens=False,
return_tensors="pt",
).to(model.device)
# Fix cross-attention mask if needed
inputs = fix_cross_attention_mask(inputs)
# Generate response
with st.spinner("Generating detailed analysis... (this may take 15-30 seconds)"):
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=0.9
)
# Decode the output
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Try to extract just the model's response (after the prompt)
if full_prompt in response:
result = response.split(full_prompt)[-1].strip()
else:
result = response
return result
# Main app
def main():
# Create placeholders for model state
if 'clip_model_loaded' not in st.session_state:
st.session_state.clip_model_loaded = False
st.session_state.clip_model = None
if 'llm_model_loaded' not in st.session_state:
st.session_state.llm_model_loaded = False
st.session_state.llm_model = None
st.session_state.tokenizer = None
# Create expanders for each stage
with st.expander("Stage 1: Model Loading", expanded=True):
# Button for loading CLIP model
clip_col, llm_col = st.columns(2)
with clip_col:
if not st.session_state.clip_model_loaded:
if st.button("π₯ Load CLIP Model for Detection", type="primary"):
# Load CLIP model
model = load_clip_model()
if model is not None:
st.session_state.clip_model = model
st.session_state.clip_model_loaded = True
st.success("β
CLIP model loaded successfully!")
else:
st.error("β Failed to load CLIP model.")
else:
st.success("β
CLIP model loaded and ready!")
with llm_col:
if not st.session_state.llm_model_loaded:
if st.button("π₯ Load Vision LLM for Analysis", type="primary"):
# Load LLM model
model, tokenizer = load_llm_model()
if model is not None and tokenizer is not None:
st.session_state.llm_model = model
st.session_state.tokenizer = tokenizer
st.session_state.llm_model_loaded = True
st.success("β
Vision LLM loaded successfully!")
else:
st.error("β Failed to load Vision LLM.")
else:
st.success("β
Vision LLM loaded and ready!")
# Image upload section
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
st.subheader("Upload an Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Uploaded Image", use_column_width=True)
# Detect with CLIP model if loaded
if st.session_state.clip_model_loaded:
with st.spinner("Analyzing image with CLIP model..."):
# Preprocess image for CLIP
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
# Create a simple dataset for the image
dataset = ImageDataset(image, transform=transform, face_only=True)
tensor, _, _, _, face_box, _ = dataset[0]
tensor = tensor.unsqueeze(0)
# Get device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Move model and tensor to device
model = st.session_state.clip_model.to(device)
tensor = tensor.to(device)
# Forward pass
with torch.no_grad():
outputs = model.vision_model(pixel_values=tensor).pooler_output
logits = model.classification_head(outputs)
probs = torch.softmax(logits, dim=1)[0]
pred_class = torch.argmax(probs).item()
confidence = probs[pred_class].item()
pred_label = "Fake" if pred_class == 1 else "Real"
# Display results
result_col1, result_col2 = st.columns(2)
with result_col1:
st.metric("Prediction", pred_label)
with result_col2:
st.metric("Confidence", f"{confidence:.2%}")
# GradCAM visualization
st.subheader("GradCAM Visualization")
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
image, model, device, pred_class
)
# Display GradCAM results
st.image(comparison, caption="Original | CAM | Overlay", use_column_width=True)
# Save results in session state for LLM analysis
st.session_state.current_image = image
st.session_state.current_overlay = overlay
st.session_state.current_face_box = detected_face_box
st.session_state.current_pred_label = pred_label
st.session_state.current_confidence = confidence
st.success("β
Initial detection and GradCAM visualization complete!")
else:
st.warning("β οΈ Please load the CLIP model first to perform initial detection.")
# LLM Analysis section
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
st.subheader("Detailed Deepfake Analysis")
# Default question with option to customize
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
question = st.text_area("Question/Prompt:", value=default_question, height=100)
# Analyze button
if st.button("π Perform Detailed Analysis", type="primary"):
result = analyze_image_with_llm(
st.session_state.current_image,
st.session_state.current_overlay,
st.session_state.current_face_box,
st.session_state.current_pred_label,
st.session_state.current_confidence,
question,
st.session_state.llm_model,
st.session_state.tokenizer,
temperature=temperature,
max_tokens=max_tokens,
custom_instruction=custom_instruction
)
# Display results
st.success("β
Analysis complete!")
# Check if the result contains both technical and non-technical explanations
if "Technical" in result and "Non-Technical" in result:
# Split the result into technical and non-technical sections
parts = result.split("Non-Technical")
technical = parts[0]
non_technical = "Non-Technical" + parts[1]
# Display in two columns
col1, col2 = st.columns(2)
with col1:
st.subheader("Technical Analysis")
st.markdown(technical)
with col2:
st.subheader("Simple Explanation")
st.markdown(non_technical)
else:
# Just display the whole result
st.subheader("Analysis Result")
st.markdown(result)
elif not hasattr(st.session_state, 'current_image'):
st.warning("β οΈ Please upload an image and complete the initial detection first.")
else:
st.warning("β οΈ Please load the Vision LLM to perform detailed analysis.")
# Footer
st.markdown("---")
st.caption("Advanced Deepfake Image Analyzer")
if __name__ == "__main__":
main() |