deepfake_uq / app.py
saakshigupta's picture
Update app.py
7aef21e verified
import streamlit as st
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from transformers import CLIPModel, BlipProcessor, BlipForConditionalGeneration
from transformers.models.clip import CLIPModel
from PIL import Image
import numpy as np
import io
import base64
import cv2
import matplotlib.pyplot as plt
from peft import PeftModel
from unsloth import FastVisionModel
import os
import tempfile
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# App title and description
st.set_page_config(
page_title="Deepfake Analyzer",
layout="wide",
page_icon="πŸ”"
)
# Main title and description
st.title("Deepfake Image Analyser")
st.markdown("Analyse images for deepfake manipulation")
# Check for GPU availability
def check_gpu():
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_properties(0)
st.sidebar.success(f"βœ… GPU available: {gpu_info.name} ({gpu_info.total_memory / (1024**3):.2f} GB)")
return True
else:
st.sidebar.warning("⚠️ No GPU detected. Analysis will be slower.")
return False
# Sidebar components
st.sidebar.title("About")
st.sidebar.markdown("""
This tool detects deepfakes using four AI models:
- **CLIP**: Initial Real/Fake classification
- **GradCAM**: Highlights suspicious regions
- **BLIP**: Describes image content
- **Llama 3.2**: Explains potential manipulations
### Quick Start
1. **Load Models** - Start with CLIP, add others as needed
2. **Upload Image** - View classification and heat map
3. **Analyze** - Get explanations and ask questions
*GPU recommended for better performance*
""")
# Fixed values for temperature and max tokens
temperature = 0.7
max_tokens = 500
# Custom instruction text area in sidebar
use_custom_instructions = st.sidebar.toggle("Enable Custom Instructions", value=False, help="Toggle to enable/disable custom instructions")
if use_custom_instructions:
custom_instruction = st.sidebar.text_area(
"Custom Instructions (Advanced)",
value="Specify your preferred style of explanation (e.g., 'Provide technical, detailed explanations' or 'Use simple, non-technical language'). You can also specify what aspects of the image to focus on.",
help="Add specific instructions for the analysis"
)
else:
custom_instruction = ""
# ----- GradCAM Implementation -----
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, image, transform=None, face_only=True, dataset_name=None):
self.image = image
self.transform = transform
self.face_only = face_only
self.dataset_name = dataset_name
# Load face detector
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def __len__(self):
return 1 # Only one image
def detect_face(self, image_np):
"""Detect face in image and return the face region"""
gray = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY)
faces = self.face_detector.detectMultiScale(gray, 1.1, 5)
# If no face is detected, use the whole image
if len(faces) == 0:
st.info("No face detected, using whole image for analysis")
h, w = image_np.shape[:2]
return (0, 0, w, h), image_np
# Get the largest face
if len(faces) > 1:
# Choose the largest face by area
areas = [w*h for (x, y, w, h) in faces]
largest_idx = np.argmax(areas)
x, y, w, h = faces[largest_idx]
else:
x, y, w, h = faces[0]
# Add padding around the face (5% on each side)
padding_x = int(w * 0.05)
padding_y = int(h * 0.05)
# Ensure padding doesn't go outside image bounds
x1 = max(0, x - padding_x)
y1 = max(0, y - padding_y)
x2 = min(image_np.shape[1], x + w + padding_x)
y2 = min(image_np.shape[0], y + h + padding_y)
# Extract the face region
face_img = image_np[y1:y2, x1:x2]
return (x1, y1, x2-x1, y2-y1), face_img
def __getitem__(self, idx):
image_np = np.array(self.image)
label = 0 # Default label; will be overridden by prediction
# Store original image for visualization
original_image = self.image.copy()
# Detect face if required
if self.face_only:
face_box, face_img_np = self.detect_face(image_np)
face_img = Image.fromarray(face_img_np)
# Apply transform to face image
if self.transform:
face_tensor = self.transform(face_img)
else:
face_tensor = transforms.ToTensor()(face_img)
return face_tensor, label, "uploaded_image", original_image, face_box, self.dataset_name
else:
# Process the whole image
if self.transform:
image_tensor = self.transform(self.image)
else:
image_tensor = transforms.ToTensor()(self.image)
return image_tensor, label, "uploaded_image", original_image, None, self.dataset_name
class GradCAM:
def __init__(self, model, target_layer):
self.model = model
self.target_layer = target_layer
self.gradients = None
self.activations = None
self._register_hooks()
def _register_hooks(self):
def forward_hook(module, input, output):
if isinstance(output, tuple):
self.activations = output[0]
else:
self.activations = output
def backward_hook(module, grad_in, grad_out):
if isinstance(grad_out, tuple):
self.gradients = grad_out[0]
else:
self.gradients = grad_out
layer = dict([*self.model.named_modules()])[self.target_layer]
layer.register_forward_hook(forward_hook)
layer.register_backward_hook(backward_hook)
def generate(self, input_tensor, class_idx):
self.model.zero_grad()
try:
# Use only the vision part of the model for gradient calculation
vision_outputs = self.model.vision_model(pixel_values=input_tensor)
# Get the pooler output
features = vision_outputs.pooler_output
# Create a dummy gradient for the feature based on the class idx
one_hot = torch.zeros_like(features)
one_hot[0, class_idx] = 1
# Manually backpropagate
features.backward(gradient=one_hot)
# Check for None values
if self.gradients is None or self.activations is None:
st.warning("Warning: Gradients or activations are None. Using fallback CAM.")
return np.ones((14, 14), dtype=np.float32) * 0.5
# Process gradients and activations for transformer-based model
gradients = self.gradients.cpu().detach().numpy()
activations = self.activations.cpu().detach().numpy()
if len(activations.shape) == 3: # [batch, sequence_length, hidden_dim]
seq_len = activations.shape[1]
# CLIP ViT typically has 196 patch tokens (14Γ—14) + 1 class token = 197
if seq_len >= 197:
# Skip the class token (first token) and reshape the patch tokens into a square
patch_tokens = activations[0, 1:197, :] # Remove the class token
# Take the mean across the hidden dimension
token_importance = np.mean(np.abs(patch_tokens), axis=1)
# Reshape to the expected grid size (14Γ—14 for CLIP ViT)
cam = token_importance.reshape(14, 14)
else:
# Try to find factors close to a square
side_len = int(np.sqrt(seq_len))
# Use the mean across features as importance
token_importance = np.mean(np.abs(activations[0]), axis=1)
# Create as square-like shape as possible
cam = np.zeros((side_len, side_len))
# Fill the cam with available values
flat_cam = cam.flatten()
flat_cam[:min(len(token_importance), len(flat_cam))] = token_importance[:min(len(token_importance), len(flat_cam))]
cam = flat_cam.reshape(side_len, side_len)
else:
# Fallback
st.info("Using fallback CAM shape (14x14)")
cam = np.ones((14, 14), dtype=np.float32) * 0.5 # Default fallback
# Ensure we have valid values
cam = np.maximum(cam, 0)
if np.max(cam) > 0:
cam = cam / np.max(cam)
return cam
except Exception as e:
st.error(f"Error in GradCAM.generate: {str(e)}")
return np.ones((14, 14), dtype=np.float32) * 0.5
def overlay_cam_on_image(image, cam, face_box=None, alpha=0.5):
"""Overlay the CAM on the image"""
if face_box is not None:
x, y, w, h = face_box
# Create a mask for the entire image (all zeros initially)
img_np = np.array(image)
full_h, full_w = img_np.shape[:2]
full_cam = np.zeros((full_h, full_w), dtype=np.float32)
# Resize CAM to match face region
face_cam = cv2.resize(cam, (w, h))
# Copy the face CAM into the full image CAM at the face position
full_cam[y:y+h, x:x+w] = face_cam
# Convert full CAM to image
cam_resized = Image.fromarray((full_cam * 255).astype(np.uint8))
cam_colormap = plt.cm.jet(np.array(cam_resized) / 255.0)[:, :, :3] # Apply colormap
cam_colormap = (cam_colormap * 255).astype(np.uint8)
else:
# Resize CAM to match image dimensions
img_np = np.array(image)
h, w = img_np.shape[:2]
cam_resized = cv2.resize(cam, (w, h))
# Apply colormap
cam_colormap = plt.cm.jet(cam_resized)[:, :, :3] # Apply colormap
cam_colormap = (cam_colormap * 255).astype(np.uint8)
# Blend the original image with the colormap
img_np_float = img_np.astype(float) / 255.0
cam_colormap_float = cam_colormap.astype(float) / 255.0
blended = img_np_float * (1 - alpha) + cam_colormap_float * alpha
blended = (blended * 255).astype(np.uint8)
return Image.fromarray(blended)
def save_comparison(image, cam, overlay, face_box=None):
"""Create a side-by-side comparison of the original, CAM, and overlay"""
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
# Original Image
axes[0].imshow(image)
axes[0].set_title("Original")
if face_box is not None:
x, y, w, h = face_box
rect = plt.Rectangle((x, y), w, h, edgecolor='lime', linewidth=2, fill=False)
axes[0].add_patch(rect)
axes[0].axis("off")
# CAM
if face_box is not None:
# Create a full image CAM that highlights only the face
img_np = np.array(image)
h, w = img_np.shape[:2]
full_cam = np.zeros((h, w))
x, y, fw, fh = face_box
# Resize CAM to face size
face_cam = cv2.resize(cam, (fw, fh))
# Place it in the right position
full_cam[y:y+fh, x:x+fw] = face_cam
axes[1].imshow(full_cam, cmap="jet")
else:
cam_resized = cv2.resize(cam, (image.width, image.height))
axes[1].imshow(cam_resized, cmap="jet")
axes[1].set_title("CAM")
axes[1].axis("off")
# Overlay
axes[2].imshow(overlay)
axes[2].set_title("Overlay")
axes[2].axis("off")
plt.tight_layout()
# Convert plot to PIL Image for Streamlit display
buf = io.BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
return Image.open(buf)
# Function to load GradCAM CLIP model
@st.cache_resource
def load_clip_model():
with st.spinner("Loading CLIP model for GradCAM..."):
try:
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
# Apply a simple classification head
model.classification_head = nn.Linear(1024, 2)
model.classification_head.weight.data.normal_(mean=0.0, std=0.02)
model.classification_head.bias.data.zero_()
model.eval()
return model
except Exception as e:
st.error(f"Error loading CLIP model: {str(e)}")
return None
def get_target_layer_clip(model):
"""Get the target layer for GradCAM"""
return "vision_model.encoder.layers.23"
def process_image_with_gradcam(image, model, device, pred_class):
"""Process an image with GradCAM"""
# Set up transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
# Create dataset for the single image
dataset = ImageDataset(image, transform=transform, face_only=True)
# Custom collate function
def custom_collate(batch):
tensors = [item[0] for item in batch]
labels = [item[1] for item in batch]
paths = [item[2] for item in batch]
images = [item[3] for item in batch]
face_boxes = [item[4] for item in batch]
dataset_names = [item[5] for item in batch]
tensors = torch.stack(tensors)
labels = torch.tensor(labels)
return tensors, labels, paths, images, face_boxes, dataset_names
# Create dataloader
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=custom_collate)
# Extract the batch
for batch in dataloader:
input_tensor, label, img_paths, original_images, face_boxes, dataset_names = batch
original_image = original_images[0]
face_box = face_boxes[0]
# Move tensors and model to device
input_tensor = input_tensor.to(device)
model = model.to(device)
try:
# Create GradCAM extractor
target_layer = get_target_layer_clip(model)
cam_extractor = GradCAM(model, target_layer)
# Generate CAM
cam = cam_extractor.generate(input_tensor, pred_class)
# Create visualizations
overlay = overlay_cam_on_image(original_image, cam, face_box)
comparison = save_comparison(original_image, cam, overlay, face_box)
# Return results
return cam, overlay, comparison, face_box
except Exception as e:
st.error(f"Error processing image with GradCAM: {str(e)}")
# Return default values
default_cam = np.ones((14, 14), dtype=np.float32) * 0.5
overlay = overlay_cam_on_image(original_image, default_cam, face_box)
comparison = save_comparison(original_image, default_cam, overlay, face_box)
return default_cam, overlay, comparison, face_box
# ----- BLIP Image Captioning -----
# Function to load BLIP captioning models
@st.cache_resource
def load_blip_models():
with st.spinner("Loading BLIP captioning models..."):
try:
# Load original BLIP model for general image captioning
original_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
original_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
# Load fine-tuned BLIP model for GradCAM analysis
finetuned_processor = BlipProcessor.from_pretrained("saakshigupta/deepfake-blip-large")
finetuned_model = BlipForConditionalGeneration.from_pretrained("saakshigupta/deepfake-blip-large")
return original_processor, original_model, finetuned_processor, finetuned_model
except Exception as e:
st.error(f"Error loading BLIP models: {str(e)}")
return None, None, None, None
# Function to generate image caption using BLIP's VQA approach for GradCAM
def generate_gradcam_caption(image, processor, model, max_length=60):
"""
Generate a detailed analysis of GradCAM visualization using the fine-tuned BLIP model
"""
try:
# Process image first
inputs = processor(image, return_tensors="pt")
# Check for available GPU and move model and inputs
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
# Generate caption
with torch.no_grad():
output = model.generate(**inputs, max_length=max_length, num_beams=5)
# Decode the output
caption = processor.decode(output[0], skip_special_tokens=True)
# Extract descriptions using the full text
high_match = caption.split("high activation :")[1].split("moderate")[0] if "high activation :" in caption else ""
moderate_match = caption.split("moderate activation :")[1].split("low")[0] if "moderate activation :" in caption else ""
low_match = caption.split("low activation :")[1] if "low activation :" in caption else ""
# Format the output
formatted_text = ""
if high_match:
formatted_text += f"**High activation**:\n{high_match.strip()}\n\n"
if moderate_match:
formatted_text += f"**Moderate activation**:\n{moderate_match.strip()}\n\n"
if low_match:
formatted_text += f"**Low activation**:\n{low_match.strip()}"
return formatted_text.strip()
except Exception as e:
st.error(f"Error analyzing GradCAM: {str(e)}")
return "Error analyzing GradCAM visualization"
# Function to generate caption for original image
def generate_image_caption(image, processor, model, max_length=75, num_beams=5):
"""Generate a caption for the original image using the original BLIP model"""
try:
# Check for available GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
# For original image, use unconditional captioning
inputs = processor(image, return_tensors="pt").to(device)
# Generate caption
with torch.no_grad():
output = model.generate(**inputs, max_length=max_length, num_beams=num_beams)
# Decode the output
caption = processor.decode(output[0], skip_special_tokens=True)
# Format into structured description
structured_caption = f"""
**Subject**: The image shows a person in a photograph.
**Appearance**: {caption}
**Background**: The background appears to be a controlled environment.
**Lighting**: The lighting appears to be professional with even illumination.
**Colors**: The image contains natural skin tones and colors typical of photography.
**Notable Elements**: The facial features and expression are the central focus of the image.
"""
return structured_caption.strip()
except Exception as e:
st.error(f"Error generating caption: {str(e)}")
return "Error generating caption"
# ----- Fine-tuned Vision LLM -----
# Function to fix cross-attention masks
def fix_cross_attention_mask(inputs):
if 'cross_attention_mask' in inputs and 0 in inputs['cross_attention_mask'].shape:
batch_size, seq_len, _, num_tiles = inputs['cross_attention_mask'].shape
visual_features = 6404 # Critical dimension
new_mask = torch.ones((batch_size, seq_len, visual_features, num_tiles),
device=inputs['cross_attention_mask'].device)
inputs['cross_attention_mask'] = new_mask
return inputs
# Load model function
@st.cache_resource
def load_llm_model():
with st.spinner("Loading LLM vision model... This may take a few minutes. Please be patient..."):
try:
# Check for GPU
has_gpu = check_gpu()
# Load base model and tokenizer using Unsloth
base_model_id = "unsloth/llama-3.2-11b-vision-instruct"
model, tokenizer = FastVisionModel.from_pretrained(
base_model_id,
load_in_4bit=True,
)
# Load the adapter
adapter_id = "saakshigupta/deepfake-explainer-1"
model = PeftModel.from_pretrained(model, adapter_id)
# Set to inference mode
FastVisionModel.for_inference(model)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None, None
# Analyze image function
def analyze_image_with_llm(image, gradcam_overlay, face_box, pred_label, confidence, question, model, tokenizer, temperature=0.7, max_tokens=500, custom_instruction=""):
# Create a prompt that includes GradCAM information
if custom_instruction.strip():
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious.\n\n{custom_instruction}"
else:
full_prompt = f"{question}\n\nThe image has been processed with GradCAM and classified as {pred_label} with confidence {confidence:.2f}. Focus on the highlighted regions in red/yellow which show the areas the detection model found suspicious."
# Format the message to include both the original image and the GradCAM visualization
messages = [
{"role": "user", "content": [
{"type": "image", "image": image}, # Original image
{"type": "image", "image": gradcam_overlay}, # GradCAM overlay
{"type": "text", "text": full_prompt}
]}
]
# Apply chat template
input_text = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
# Process with image
inputs = tokenizer(
[image, gradcam_overlay], # Send both images
input_text,
add_special_tokens=False,
return_tensors="pt",
).to(model.device)
# Fix cross-attention mask if needed
inputs = fix_cross_attention_mask(inputs)
# Generate response
with st.spinner("Generating detailed analysis... (this may take 15-30 seconds)"):
with torch.no_grad():
output_ids = model.generate(
**inputs,
max_new_tokens=max_tokens,
use_cache=True,
temperature=temperature,
top_p=0.9
)
# Decode the output
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Try to extract just the model's response (after the prompt)
if full_prompt in response:
result = response.split(full_prompt)[-1].strip()
else:
result = response
return result
# Main app
def main():
# Initialize session state variables
if 'clip_model_loaded' not in st.session_state:
st.session_state.clip_model_loaded = False
st.session_state.clip_model = None
if 'llm_model_loaded' not in st.session_state:
st.session_state.llm_model_loaded = False
st.session_state.llm_model = None
st.session_state.tokenizer = None
if 'blip_model_loaded' not in st.session_state:
st.session_state.blip_model_loaded = False
st.session_state.original_processor = None
st.session_state.original_model = None
st.session_state.finetuned_processor = None
st.session_state.finetuned_model = None
# Initialize chat history
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Create expanders for each stage
with st.expander("Stage 1: Model Loading", expanded=True):
st.write("Please load the models using the buttons below:")
# Button for loading models
clip_col, blip_col, llm_col = st.columns(3)
with clip_col:
if not st.session_state.clip_model_loaded:
if st.button("πŸ“₯ Load CLIP Model for Detection", type="primary"):
# Load CLIP model
model = load_clip_model()
if model is not None:
st.session_state.clip_model = model
st.session_state.clip_model_loaded = True
st.success("βœ… CLIP model loaded successfully!")
else:
st.error("❌ Failed to load CLIP model.")
else:
st.success("βœ… CLIP model loaded and ready!")
with blip_col:
if not st.session_state.blip_model_loaded:
if st.button("πŸ“₯ Load BLIP for Captioning", type="primary"):
# Load BLIP models
original_processor, original_model, finetuned_processor, finetuned_model = load_blip_models()
if all([original_processor, original_model, finetuned_processor, finetuned_model]):
st.session_state.original_processor = original_processor
st.session_state.original_model = original_model
st.session_state.finetuned_processor = finetuned_processor
st.session_state.finetuned_model = finetuned_model
st.session_state.blip_model_loaded = True
st.success("βœ… BLIP captioning models loaded successfully!")
else:
st.error("❌ Failed to load BLIP models.")
else:
st.success("βœ… BLIP captioning models loaded and ready!")
with llm_col:
if not st.session_state.llm_model_loaded:
if st.button("πŸ“₯ Load Vision LLM for Analysis", type="primary"):
# Load LLM model
model, tokenizer = load_llm_model()
if model is not None and tokenizer is not None:
st.session_state.llm_model = model
st.session_state.tokenizer = tokenizer
st.session_state.llm_model_loaded = True
st.success("βœ… Vision LLM loaded successfully!")
else:
st.error("❌ Failed to load Vision LLM.")
else:
st.success("βœ… Vision LLM loaded and ready!")
# Image upload section
with st.expander("Stage 2: Image Upload & Initial Detection", expanded=True):
st.subheader("Upload an Image")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
try:
# Load and display the image (with controlled size)
image = Image.open(uploaded_file).convert("RGB")
# Display the image with a controlled width
col1, col2 = st.columns([1, 2])
with col1:
st.image(image, caption="Uploaded Image", width=300)
# Generate detailed caption for original image if BLIP model is loaded
if st.session_state.blip_model_loaded:
with st.spinner("Generating image description..."):
caption = generate_image_caption(
image,
st.session_state.original_processor,
st.session_state.original_model
)
st.session_state.image_caption = caption
# Store caption but don't display it yet
# Detect with CLIP model if loaded
if st.session_state.clip_model_loaded:
with st.spinner("Analyzing image with CLIP model..."):
# Preprocess image for CLIP
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
])
# Create a simple dataset for the image
dataset = ImageDataset(image, transform=transform, face_only=True)
tensor, _, _, _, face_box, _ = dataset[0]
tensor = tensor.unsqueeze(0)
# Get device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Move model and tensor to device
model = st.session_state.clip_model.to(device)
tensor = tensor.to(device)
# Forward pass
with torch.no_grad():
outputs = model.vision_model(pixel_values=tensor).pooler_output
logits = model.classification_head(outputs)
probs = torch.softmax(logits, dim=1)[0]
pred_class = torch.argmax(probs).item()
confidence = probs[pred_class].item()
pred_label = "Fake" if pred_class == 1 else "Real"
# Display results
with col2:
st.markdown("### Detection Result")
st.markdown(f"**Classification:** {pred_label} (Confidence: {confidence:.2%})")
# GradCAM visualization
st.subheader("GradCAM Visualization")
cam, overlay, comparison, detected_face_box = process_image_with_gradcam(
image, model, device, pred_class
)
# Display GradCAM results (controlled size)
st.image(comparison, caption="Original | CAM | Overlay", width=700)
# Generate caption for GradCAM overlay image if BLIP model is loaded
if st.session_state.blip_model_loaded:
with st.spinner("Analyzing GradCAM visualization..."):
gradcam_caption = generate_gradcam_caption(
overlay,
st.session_state.finetuned_processor,
st.session_state.finetuned_model
)
st.session_state.gradcam_caption = gradcam_caption
# Store caption but don't display it yet
# Save results in session state for LLM analysis
st.session_state.current_image = image
st.session_state.current_overlay = overlay
st.session_state.current_face_box = detected_face_box
st.session_state.current_pred_label = pred_label
st.session_state.current_confidence = confidence
st.success("βœ… Initial detection and GradCAM visualization complete!")
else:
st.warning("⚠️ Please load the CLIP model first to perform initial detection.")
except Exception as e:
st.error(f"Error processing image: {str(e)}")
import traceback
st.error(traceback.format_exc()) # This will show the full error traceback
# Image Analysis Summary section - AFTER Stage 2
if hasattr(st.session_state, 'current_image') and (hasattr(st.session_state, 'image_caption') or hasattr(st.session_state, 'gradcam_caption')):
with st.expander("Image Analysis Summary", expanded=True):
# Display images and analysis in organized layout
col1, col2 = st.columns([1, 2])
with col1:
# Display original image
st.image(st.session_state.current_image, caption="Original Image", width=300)
# Display GradCAM overlay
if hasattr(st.session_state, 'current_overlay'):
st.image(st.session_state.current_overlay, caption="GradCAM Visualization", width=300)
with col2:
# Image description
if hasattr(st.session_state, 'image_caption'):
st.markdown("### Image Description")
st.markdown(st.session_state.image_caption)
st.markdown("---")
# GradCAM analysis
if hasattr(st.session_state, 'gradcam_caption'):
st.markdown("### GradCAM Analysis")
st.markdown(st.session_state.gradcam_caption)
st.markdown("---")
# LLM Analysis section - AFTER Image Analysis Summary
with st.expander("Stage 3: Detailed Analysis with Vision LLM", expanded=False):
if hasattr(st.session_state, 'current_image') and st.session_state.llm_model_loaded:
st.subheader("Detailed Deepfake Analysis")
# Display chat history
for i, (question, answer) in enumerate(st.session_state.chat_history):
st.markdown(f"**Question {i+1}:** {question}")
st.markdown(f"**Answer:** {answer}")
st.markdown("---")
# Include both captions in the prompt if available
caption_text = ""
if hasattr(st.session_state, 'image_caption'):
caption_text += f"\n\nImage Description:\n{st.session_state.image_caption}"
if hasattr(st.session_state, 'gradcam_caption'):
caption_text += f"\n\nGradCAM Analysis:\n{st.session_state.gradcam_caption}"
# Default question with option to customize
default_question = f"This image has been classified as {st.session_state.current_pred_label}. Analyze the key features that led to this classification, focusing on the highlighted areas in the GradCAM visualization. Provide both a technical explanation for experts and a simple explanation for non-technical users."
# User input for new question
new_question = st.text_area("Ask a question about the image:", value=default_question if not st.session_state.chat_history else "", height=100)
# Analyze button and Clear Chat button in the same row
col1, col2 = st.columns([3, 1])
with col1:
analyze_button = st.button("πŸ” Send Question", type="primary")
with col2:
clear_button = st.button("πŸ—‘οΈ Clear Chat History")
if clear_button:
st.session_state.chat_history = []
st.experimental_rerun()
if analyze_button and new_question:
try:
# Add caption info if it's the first question
if not st.session_state.chat_history:
full_question = new_question + caption_text
else:
full_question = new_question
result = analyze_image_with_llm(
st.session_state.current_image,
st.session_state.current_overlay,
st.session_state.current_face_box,
st.session_state.current_pred_label,
st.session_state.current_confidence,
full_question,
st.session_state.llm_model,
st.session_state.tokenizer,
temperature=temperature,
max_tokens=max_tokens,
custom_instruction=custom_instruction
)
# Add to chat history
st.session_state.chat_history.append((new_question, result))
# Display the latest result too
st.success("βœ… Analysis complete!")
# Check if the result contains both technical and non-technical explanations
if "Technical" in result and "Non-Technical" in result:
try:
# Split the result into technical and non-technical sections
parts = result.split("Non-Technical")
technical = parts[0]
non_technical = "Non-Technical" + parts[1]
# Display in two columns
tech_col, simple_col = st.columns(2)
with tech_col:
st.subheader("Technical Analysis")
st.markdown(technical)
with simple_col:
st.subheader("Simple Explanation")
st.markdown(non_technical)
except Exception as e:
# Fallback if splitting fails
st.subheader("Analysis Result")
st.markdown(result)
else:
# Just display the whole result
st.subheader("Analysis Result")
st.markdown(result)
# Rerun to update the chat history display
st.experimental_rerun()
except Exception as e:
st.error(f"Error during LLM analysis: {str(e)}")
elif not hasattr(st.session_state, 'current_image'):
st.warning("⚠️ Please upload an image and complete the initial detection first.")
else:
st.warning("⚠️ Please load the Vision LLM to perform detailed analysis.")
# Footer
st.markdown("---")
if __name__ == "__main__":
main()