Spaces:
Sleeping
Sleeping
# Example model training script | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Embedding, LSTM, Dense, Dropout | |
from tensorflow.keras.preprocessing.text import Tokenizer | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
import numpy as np | |
import pickle | |
# Sample dataset | |
texts = ["This is valid", "This is malicious", "Valid text", "Malicious text"] | |
labels = [0, 1, 0, 1] # 0: Valid, 1: Malicious | |
# Tokenization | |
tokenizer = Tokenizer(num_words=1000) | |
tokenizer.fit_on_texts(texts) | |
sequences = tokenizer.texts_to_sequences(texts) | |
padded_sequences = pad_sequences(sequences, maxlen=50) | |
# Save the tokenizer | |
with open("tokenizer.pkl", "wb") as f: | |
pickle.dump(tokenizer, f) | |
# Model architecture | |
model = Sequential([ | |
Embedding(input_dim=1000, output_dim=64, input_length=50), | |
LSTM(64, return_sequences=False), | |
Dropout(0.5), | |
Dense(1, activation="sigmoid") | |
]) | |
# Compile and train the model | |
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) | |
model.fit(padded_sequences, np.array(labels), epochs=10) | |
# Save the model | |
model.save("model.h5") | |