File size: 9,927 Bytes
8abcf2d
ef8c30b
834b1c6
8abcf2d
ef8c30b
d65669a
 
 
 
bf52501
d65669a
 
 
 
 
 
 
5d70faf
 
 
 
 
 
 
bf52501
5d70faf
3951475
 
bf52501
3951475
 
 
 
 
 
 
 
dcb01bb
 
bf52501
dcb01bb
d65669a
 
 
 
 
 
dcb01bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef8c30b
4483569
 
dcb01bb
 
2beb7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb01bb
 
 
2beb7b1
 
 
 
 
 
 
dcb01bb
2beb7b1
 
d65669a
2beb7b1
 
d65669a
dcb01bb
 
2beb7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8abcf2d
4483569
2beb7b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee7c71e
dcb01bb
 
 
 
 
8abcf2d
3951475
 
 
 
8abcf2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import gradio as gr
from transformers import AutoConfig  # Required for Hugging Face integration
from calc_params import calc_params  # Import calc_params from the new file

# ---- Helper Functions ---- #
def get_hf_model_args(hf_model_name_or_path):
    try:
        config = AutoConfig.from_pretrained(hf_model_name_or_path, trust_remote_code=True).to_dict()
    except Exception as e:
        raise gr.Error(f"Error fetching Hugging Face model: {str(e)}")
    
    # Extract relevant values from the config
    num_layers = config.get("num_hidden_layers", None)
    hidden_size = config.get("hidden_size", None)
    num_attention_heads = config.get("num_attention_heads", None)
    vocab_size = config.get("vocab_size", None)
    sequence_length = config.get("max_position_embeddings", None)

    return {
        "num_layers": num_layers,
        "hidden_size": hidden_size,
        "num_attention_heads": num_attention_heads,
        "vocab_size": vocab_size,
        "sequence_length": sequence_length,
    }

# ---- Update Gradio inputs with Hugging Face model config ---- #
def update_from_hf_model(hf_model_name_or_path):
    model_params = get_hf_model_args(hf_model_name_or_path)
    
    return (gr.update(value=model_params["num_layers"]), 
            gr.update(value=model_params["hidden_size"]),
            gr.update(value=model_params["num_attention_heads"]),
            gr.update(value=model_params["vocab_size"]),
            gr.update(value=model_params["sequence_length"]),
            "")

# ---- Memory Calculation ---- #
def calc_mem(hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib):
    model_params = get_hf_model_args(hf_model_name_or_path) if hf_model_name_or_path else None
    
    if model_params:
        num_layers = model_params["num_layers"] or num_layers
        hidden_size = model_params["hidden_size"] or hidden_size
        num_attention_heads = model_params["num_attention_heads"] or num_attention_heads
        vocab_size = model_params["vocab_size"] or vocab_size
        sequence_length = model_params["sequence_length"] or sequence_length
    
    dp_degree = num_gpus / (tensor_parallel_size * pipeline_parallel_size)
    embed_params = 2 * vocab_size * hidden_size
    positional_params = hidden_size * sequence_length
    ln_params = 8 * hidden_size * num_layers + (2 * hidden_size)
    attention_params = int(2 * (1 + ffn_expansion_factor) * num_layers * hidden_size * hidden_size)
    mlp_params = ffn_expansion_factor * num_layers * hidden_size * hidden_size
    total_params = embed_params + positional_params + ln_params + attention_params + mlp_params

    bytes_per_param = 2 if is_mixed_precision else 4
    model_mem = total_params * bytes_per_param
    per_gpu_mem_gib = (model_mem / (tensor_parallel_size * pipeline_parallel_size)) / 1024**3 + misc_mem_gib

    return f"Per-GPU Memory Required for Training: {per_gpu_mem_gib:.2f} GiB"

# ---- Gradio Interface ---- #
with gr.Blocks() as demo:
    with gr.Tabs():
        # Memory Calculation Tab
        with gr.TabItem("Memory Calculation"):
            hf_model_name_or_path = gr.Textbox(
                label="HuggingFace Model Name or Path",
                info="Name of the HuggingFace Hub repository or the local file path for it"
            )
            num_gpus = gr.Number(
                label="Number of GPUs", 
                value=1, 
                info="Number of GPUs used for training"
            )
            tensor_parallel_size = gr.Number(
                label="Tensor Parallel Size", 
                value=1, 
                info="Tensor parallel degree (1 if not used)"
            )
            pipeline_parallel_size = gr.Number(
                label="Pipeline Parallel Size", 
                value=1, 
                info="Pipeline parallel degree (1 if not used)"
            )
            batch_size_per_gpu = gr.Number(
                label="Batch Size per GPU", 
                value=8, 
                info="Batch size per GPU"
            )
            sequence_length = gr.Number(
                label="Sequence Length", 
                value=2048, 
                info="Sequence length used for training"
            )
            vocab_size = gr.Number(
                label="Vocab Size", 
                value=51200, 
                info="How many tokens are in the embedding layer"
            )
            hidden_size = gr.Number(
                label="Hidden Size", 
                value=6144, 
                info="Dimension of the model's hidden size"
            )
            num_attention_heads = gr.Number(
                label="Number of Attention Heads", 
                value=64, 
                info="Number of attention heads used in the model"
            )
            num_layers = gr.Number(
                label="Number of Layers", 
                value=44, 
                info="Number of transformer layers used in the model"
            )
            ffn_expansion_factor = gr.Number(
                label="FFN Expansion Factor", 
                value=4, 
                info="How much the MLP hidden size expands"
            )
            is_mixed_precision = gr.Checkbox(
                label="Mixed Precision", 
                value=True, 
                info="Whether mixed precision is enabled"
            )
            misc_mem_gib = gr.Number(
                label="Miscellaneous Memory Overhead (GiB)", 
                value=5, 
                info="Miscellaneous memory overhead per GPU by DL frameworks, communication libraries, etc."
            )

            memory_result = gr.Textbox(label="Memory Calculation Result", interactive=False)
            calc_memory_button = gr.Button("Calculate Memory")
            calc_memory_button.click(
                calc_mem, 
                inputs=[
                    hf_model_name_or_path, num_gpus, tensor_parallel_size, pipeline_parallel_size, batch_size_per_gpu, sequence_length, vocab_size, hidden_size, num_attention_heads, num_layers, ffn_expansion_factor, is_mixed_precision, misc_mem_gib
                ], 
                outputs=memory_result
            )

            hf_model_name_or_path.change(
                fn=update_from_hf_model, 
                inputs=[hf_model_name_or_path], 
                outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length, memory_result]
            )

        # Parameter Calculation Tab
        with gr.TabItem("Parameter Calculation"):
            hf_model_name_or_path = gr.Textbox(
                label="HuggingFace Model Name or Path",
                info="Name of the HuggingFace Hub repository or the local file path for it"
            )
            vocab_size = gr.Number(
                label="Vocab Size", 
                value=51200, 
                info="How many tokens are in the embedding layer"
            )
            tied_embeddings = gr.Checkbox(
                label="Tied Embeddings", 
                value=False, 
                info="Whether embeddings are tied (shared between input and output)"
            )
            hidden_size = gr.Number(
                label="Hidden Size", 
                value=6144, 
                info="Dimension of the model's hidden size"
            )
            sequence_length = gr.Number(
                label="Sequence Length", 
                value=2048, 
                info="Sequence length used for training"
            )
            num_layers = gr.Number(
                label="Number of Layers", 
                value=44, 
                info="Number of transformer layers used in the model"
            )
            ffn_expansion_factor = gr.Number(
                label="FFN Expansion Factor", 
                value=4, 
                info="How much the MLP hidden size expands"
            )
            num_mlp_linears = gr.Number(
                label="Number of Linear Layers per MLP Block", 
                value=2, 
                info="How many linear layers per MLP block"
            )
            kv_size_ratio = gr.Number(
                label="KV Size Ratio", 
                value=1.0, 
                info="Ratio of total query heads to key/value heads. 1.0 for MHA, 1/num_attention_heads for MQA"
            )

            with gr.Accordion("MoE Parameters", open=False):
                moe = gr.Checkbox(
                    label="MoE", 
                    value=False, 
                    info="Whether the model is MoE"
                )
                num_experts = gr.Number(
                    label="Number of Experts", 
                    value=8, 
                    info="Number of experts for MoE"
                )
                expert_interval = gr.Number(
                    label="Expert Interval", 
                    value=1, 
                    info="Expert interval for MoE"
                )
                topk = gr.Number(
                    label="Top k Routing", 
                    value=1, 
                    info="Top k routing for MoE"
                )

            param_result = gr.Textbox(label="Parameter Calculation Result", interactive=False)
            calc_param_button = gr.Button("Calculate Parameters")
            calc_param_button.click(calc_params, 
                inputs=[vocab_size, tied_embeddings, hidden_size, sequence_length, num_layers, moe, num_experts, expert_interval, topk, ffn_expansion_factor, num_mlp_linears, kv_size_ratio], 
                outputs=param_result)

            hf_model_name_or_path.change(fn=update_from_hf_model, 
                inputs=[hf_model_name_or_path], 
                outputs=[num_layers, hidden_size, num_attention_heads, vocab_size, sequence_length])

demo.launch()