Spaces:
Running
on
Zero
Running
on
Zero
""" | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
COCO evaluator that works in distributed mode. | |
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py | |
The difference is that there is less copy-pasting from pycocotools | |
in the end of the file, as python3 can suppress prints with contextlib | |
""" | |
import contextlib | |
import copy | |
import os | |
import faster_coco_eval.core.mask as mask_util | |
import numpy as np | |
import torch | |
from faster_coco_eval import COCO, COCOeval_faster | |
from ...core import register | |
from ...misc import dist_utils | |
__all__ = [ | |
"CocoEvaluator", | |
] | |
class CocoEvaluator(object): | |
def __init__(self, coco_gt, iou_types): | |
assert isinstance(iou_types, (list, tuple)) | |
coco_gt = copy.deepcopy(coco_gt) | |
self.coco_gt: COCO = coco_gt | |
self.iou_types = iou_types | |
self.coco_eval = {} | |
for iou_type in iou_types: | |
self.coco_eval[iou_type] = COCOeval_faster( | |
coco_gt, iouType=iou_type, print_function=print, separate_eval=True | |
) | |
self.img_ids = [] | |
self.eval_imgs = {k: [] for k in iou_types} | |
def cleanup(self): | |
self.coco_eval = {} | |
for iou_type in self.iou_types: | |
self.coco_eval[iou_type] = COCOeval_faster( | |
self.coco_gt, iouType=iou_type, print_function=print, separate_eval=True | |
) | |
self.img_ids = [] | |
self.eval_imgs = {k: [] for k in self.iou_types} | |
def update(self, predictions): | |
img_ids = list(np.unique(list(predictions.keys()))) | |
self.img_ids.extend(img_ids) | |
for iou_type in self.iou_types: | |
results = self.prepare(predictions, iou_type) | |
coco_eval = self.coco_eval[iou_type] | |
# suppress pycocotools prints | |
with open(os.devnull, "w") as devnull: | |
with contextlib.redirect_stdout(devnull): | |
coco_dt = self.coco_gt.loadRes(results) if results else COCO() | |
coco_eval.cocoDt = coco_dt | |
coco_eval.params.imgIds = list(img_ids) | |
coco_eval.evaluate() | |
self.eval_imgs[iou_type].append( | |
np.array(coco_eval._evalImgs_cpp).reshape( | |
len(coco_eval.params.catIds), | |
len(coco_eval.params.areaRng), | |
len(coco_eval.params.imgIds), | |
) | |
) | |
def synchronize_between_processes(self): | |
for iou_type in self.iou_types: | |
img_ids, eval_imgs = merge(self.img_ids, self.eval_imgs[iou_type]) | |
coco_eval = self.coco_eval[iou_type] | |
coco_eval.params.imgIds = img_ids | |
coco_eval._paramsEval = copy.deepcopy(coco_eval.params) | |
coco_eval._evalImgs_cpp = eval_imgs | |
def accumulate(self): | |
for coco_eval in self.coco_eval.values(): | |
coco_eval.accumulate() | |
def summarize(self): | |
for iou_type, coco_eval in self.coco_eval.items(): | |
print("IoU metric: {}".format(iou_type)) | |
coco_eval.summarize() | |
def prepare(self, predictions, iou_type): | |
if iou_type == "bbox": | |
return self.prepare_for_coco_detection(predictions) | |
elif iou_type == "segm": | |
return self.prepare_for_coco_segmentation(predictions) | |
elif iou_type == "keypoints": | |
return self.prepare_for_coco_keypoint(predictions) | |
else: | |
raise ValueError("Unknown iou type {}".format(iou_type)) | |
def prepare_for_coco_detection(self, predictions): | |
coco_results = [] | |
for original_id, prediction in predictions.items(): | |
if len(prediction) == 0: | |
continue | |
boxes = prediction["boxes"] | |
boxes = convert_to_xywh(boxes).tolist() | |
scores = prediction["scores"].tolist() | |
labels = prediction["labels"].tolist() | |
coco_results.extend( | |
[ | |
{ | |
"image_id": original_id, | |
"category_id": labels[k], | |
"bbox": box, | |
"score": scores[k], | |
} | |
for k, box in enumerate(boxes) | |
] | |
) | |
return coco_results | |
def prepare_for_coco_segmentation(self, predictions): | |
coco_results = [] | |
for original_id, prediction in predictions.items(): | |
if len(prediction) == 0: | |
continue | |
scores = prediction["scores"] | |
labels = prediction["labels"] | |
masks = prediction["masks"] | |
masks = masks > 0.5 | |
scores = prediction["scores"].tolist() | |
labels = prediction["labels"].tolist() | |
rles = [ | |
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] | |
for mask in masks | |
] | |
for rle in rles: | |
rle["counts"] = rle["counts"].decode("utf-8") | |
coco_results.extend( | |
[ | |
{ | |
"image_id": original_id, | |
"category_id": labels[k], | |
"segmentation": rle, | |
"score": scores[k], | |
} | |
for k, rle in enumerate(rles) | |
] | |
) | |
return coco_results | |
def prepare_for_coco_keypoint(self, predictions): | |
coco_results = [] | |
for original_id, prediction in predictions.items(): | |
if len(prediction) == 0: | |
continue | |
boxes = prediction["boxes"] | |
boxes = convert_to_xywh(boxes).tolist() | |
scores = prediction["scores"].tolist() | |
labels = prediction["labels"].tolist() | |
keypoints = prediction["keypoints"] | |
keypoints = keypoints.flatten(start_dim=1).tolist() | |
coco_results.extend( | |
[ | |
{ | |
"image_id": original_id, | |
"category_id": labels[k], | |
"keypoints": keypoint, | |
"score": scores[k], | |
} | |
for k, keypoint in enumerate(keypoints) | |
] | |
) | |
return coco_results | |
def convert_to_xywh(boxes): | |
xmin, ymin, xmax, ymax = boxes.unbind(1) | |
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1) | |
def merge(img_ids, eval_imgs): | |
all_img_ids = dist_utils.all_gather(img_ids) | |
all_eval_imgs = dist_utils.all_gather(eval_imgs) | |
merged_img_ids = [] | |
for p in all_img_ids: | |
merged_img_ids.extend(p) | |
merged_eval_imgs = [] | |
for p in all_eval_imgs: | |
merged_eval_imgs.extend(p) | |
merged_img_ids = np.array(merged_img_ids) | |
merged_eval_imgs = np.concatenate(merged_eval_imgs, axis=2).ravel() | |
# merged_eval_imgs = np.array(merged_eval_imgs).T.ravel() | |
# keep only unique (and in sorted order) images | |
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True) | |
return merged_img_ids.tolist(), merged_eval_imgs.tolist() | |