Spaces:
Running
on
Zero
Running
on
Zero
""" | |
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement | |
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved. | |
--------------------------------------------------------------------------------- | |
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR) | |
Copyright (c) 2023 lyuwenyu. All Rights Reserved. | |
""" | |
import copy | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...core import register | |
from .utils import get_activation | |
__all__ = ["HybridEncoder"] | |
class ConvNormLayer_fuse(nn.Module): | |
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None): | |
super().__init__() | |
padding = (kernel_size - 1) // 2 if padding is None else padding | |
self.conv = nn.Conv2d( | |
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias | |
) | |
self.norm = nn.BatchNorm2d(ch_out) | |
self.act = nn.Identity() if act is None else get_activation(act) | |
self.ch_in, self.ch_out, self.kernel_size, self.stride, self.g, self.padding, self.bias = ( | |
ch_in, | |
ch_out, | |
kernel_size, | |
stride, | |
g, | |
padding, | |
bias, | |
) | |
def forward(self, x): | |
if hasattr(self, "conv_bn_fused"): | |
y = self.conv_bn_fused(x) | |
else: | |
y = self.norm(self.conv(x)) | |
return self.act(y) | |
def convert_to_deploy(self): | |
if not hasattr(self, "conv_bn_fused"): | |
self.conv_bn_fused = nn.Conv2d( | |
self.ch_in, | |
self.ch_out, | |
self.kernel_size, | |
self.stride, | |
groups=self.g, | |
padding=self.padding, | |
bias=True, | |
) | |
kernel, bias = self.get_equivalent_kernel_bias() | |
self.conv_bn_fused.weight.data = kernel | |
self.conv_bn_fused.bias.data = bias | |
self.__delattr__("conv") | |
self.__delattr__("norm") | |
def get_equivalent_kernel_bias(self): | |
kernel3x3, bias3x3 = self._fuse_bn_tensor() | |
return kernel3x3, bias3x3 | |
def _fuse_bn_tensor(self): | |
kernel = self.conv.weight | |
running_mean = self.norm.running_mean | |
running_var = self.norm.running_var | |
gamma = self.norm.weight | |
beta = self.norm.bias | |
eps = self.norm.eps | |
std = (running_var + eps).sqrt() | |
t = (gamma / std).reshape(-1, 1, 1, 1) | |
return kernel * t, beta - running_mean * gamma / std | |
class ConvNormLayer(nn.Module): | |
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None): | |
super().__init__() | |
padding = (kernel_size - 1) // 2 if padding is None else padding | |
self.conv = nn.Conv2d( | |
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias | |
) | |
self.norm = nn.BatchNorm2d(ch_out) | |
self.act = nn.Identity() if act is None else get_activation(act) | |
def forward(self, x): | |
return self.act(self.norm(self.conv(x))) | |
class SCDown(nn.Module): | |
def __init__(self, c1, c2, k, s): | |
super().__init__() | |
self.cv1 = ConvNormLayer_fuse(c1, c2, 1, 1) | |
self.cv2 = ConvNormLayer_fuse(c2, c2, k, s, c2) | |
def forward(self, x): | |
return self.cv2(self.cv1(x)) | |
class VGGBlock(nn.Module): | |
def __init__(self, ch_in, ch_out, act="relu"): | |
super().__init__() | |
self.ch_in = ch_in | |
self.ch_out = ch_out | |
self.conv1 = ConvNormLayer(ch_in, ch_out, 3, 1, padding=1, act=None) | |
self.conv2 = ConvNormLayer(ch_in, ch_out, 1, 1, padding=0, act=None) | |
self.act = nn.Identity() if act is None else act | |
def forward(self, x): | |
if hasattr(self, "conv"): | |
y = self.conv(x) | |
else: | |
y = self.conv1(x) + self.conv2(x) | |
return self.act(y) | |
def convert_to_deploy(self): | |
if not hasattr(self, "conv"): | |
self.conv = nn.Conv2d(self.ch_in, self.ch_out, 3, 1, padding=1) | |
kernel, bias = self.get_equivalent_kernel_bias() | |
self.conv.weight.data = kernel | |
self.conv.bias.data = bias | |
self.__delattr__("conv1") | |
self.__delattr__("conv2") | |
def get_equivalent_kernel_bias(self): | |
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1) | |
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2) | |
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1), bias3x3 + bias1x1 | |
def _pad_1x1_to_3x3_tensor(self, kernel1x1): | |
if kernel1x1 is None: | |
return 0 | |
else: | |
return F.pad(kernel1x1, [1, 1, 1, 1]) | |
def _fuse_bn_tensor(self, branch: ConvNormLayer): | |
if branch is None: | |
return 0, 0 | |
kernel = branch.conv.weight | |
running_mean = branch.norm.running_mean | |
running_var = branch.norm.running_var | |
gamma = branch.norm.weight | |
beta = branch.norm.bias | |
eps = branch.norm.eps | |
std = (running_var + eps).sqrt() | |
t = (gamma / std).reshape(-1, 1, 1, 1) | |
return kernel * t, beta - running_mean * gamma / std | |
class ELAN(nn.Module): | |
# csp-elan | |
def __init__(self, c1, c2, c3, c4, n=2, bias=False, act="silu", bottletype=VGGBlock): | |
super().__init__() | |
self.c = c3 | |
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act) | |
self.cv2 = nn.Sequential( | |
bottletype(c3 // 2, c4, act=get_activation(act)), | |
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act), | |
) | |
self.cv3 = nn.Sequential( | |
bottletype(c4, c4, act=get_activation(act)), | |
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act), | |
) | |
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act) | |
def forward(self, x): | |
# y = [self.cv1(x)] | |
y = list(self.cv1(x).chunk(2, 1)) | |
y.extend((m(y[-1])) for m in [self.cv2, self.cv3]) | |
return self.cv4(torch.cat(y, 1)) | |
class RepNCSPELAN4(nn.Module): | |
# csp-elan | |
def __init__(self, c1, c2, c3, c4, n=3, bias=False, act="silu"): | |
super().__init__() | |
self.c = c3 // 2 | |
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act) | |
self.cv2 = nn.Sequential( | |
CSPLayer(c3 // 2, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock), | |
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act), | |
) | |
self.cv3 = nn.Sequential( | |
CSPLayer(c4, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock), | |
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act), | |
) | |
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act) | |
def forward_chunk(self, x): | |
y = list(self.cv1(x).chunk(2, 1)) | |
y.extend((m(y[-1])) for m in [self.cv2, self.cv3]) | |
return self.cv4(torch.cat(y, 1)) | |
def forward(self, x): | |
y = list(self.cv1(x).split((self.c, self.c), 1)) | |
y.extend(m(y[-1]) for m in [self.cv2, self.cv3]) | |
return self.cv4(torch.cat(y, 1)) | |
class CSPLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
num_blocks=3, | |
expansion=1.0, | |
bias=False, | |
act="silu", | |
bottletype=VGGBlock, | |
): | |
super(CSPLayer, self).__init__() | |
hidden_channels = int(out_channels * expansion) | |
self.conv1 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act) | |
self.conv2 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act) | |
self.bottlenecks = nn.Sequential( | |
*[ | |
bottletype(hidden_channels, hidden_channels, act=get_activation(act)) | |
for _ in range(num_blocks) | |
] | |
) | |
if hidden_channels != out_channels: | |
self.conv3 = ConvNormLayer_fuse(hidden_channels, out_channels, 1, 1, bias=bias, act=act) | |
else: | |
self.conv3 = nn.Identity() | |
def forward(self, x): | |
x_1 = self.conv1(x) | |
x_1 = self.bottlenecks(x_1) | |
x_2 = self.conv2(x) | |
return self.conv3(x_1 + x_2) | |
# transformer | |
class TransformerEncoderLayer(nn.Module): | |
def __init__( | |
self, | |
d_model, | |
nhead, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation="relu", | |
normalize_before=False, | |
): | |
super().__init__() | |
self.normalize_before = normalize_before | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout, batch_first=True) | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = get_activation(activation) | |
def with_pos_embed(tensor, pos_embed): | |
return tensor if pos_embed is None else tensor + pos_embed | |
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor: | |
residual = src | |
if self.normalize_before: | |
src = self.norm1(src) | |
q = k = self.with_pos_embed(src, pos_embed) | |
src, _ = self.self_attn(q, k, value=src, attn_mask=src_mask) | |
src = residual + self.dropout1(src) | |
if not self.normalize_before: | |
src = self.norm1(src) | |
residual = src | |
if self.normalize_before: | |
src = self.norm2(src) | |
src = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = residual + self.dropout2(src) | |
if not self.normalize_before: | |
src = self.norm2(src) | |
return src | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(num_layers)]) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor: | |
output = src | |
for layer in self.layers: | |
output = layer(output, src_mask=src_mask, pos_embed=pos_embed) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class HybridEncoder(nn.Module): | |
__share__ = [ | |
"eval_spatial_size", | |
] | |
def __init__( | |
self, | |
in_channels=[512, 1024, 2048], | |
feat_strides=[8, 16, 32], | |
hidden_dim=256, | |
nhead=8, | |
dim_feedforward=1024, | |
dropout=0.0, | |
enc_act="gelu", | |
use_encoder_idx=[2], | |
num_encoder_layers=1, | |
pe_temperature=10000, | |
expansion=1.0, | |
depth_mult=1.0, | |
act="silu", | |
eval_spatial_size=None, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.feat_strides = feat_strides | |
self.hidden_dim = hidden_dim | |
self.use_encoder_idx = use_encoder_idx | |
self.num_encoder_layers = num_encoder_layers | |
self.pe_temperature = pe_temperature | |
self.eval_spatial_size = eval_spatial_size | |
self.out_channels = [hidden_dim for _ in range(len(in_channels))] | |
self.out_strides = feat_strides | |
# channel projection | |
self.input_proj = nn.ModuleList() | |
for in_channel in in_channels: | |
proj = nn.Sequential( | |
OrderedDict( | |
[ | |
("conv", nn.Conv2d(in_channel, hidden_dim, kernel_size=1, bias=False)), | |
("norm", nn.BatchNorm2d(hidden_dim)), | |
] | |
) | |
) | |
self.input_proj.append(proj) | |
# encoder transformer | |
encoder_layer = TransformerEncoderLayer( | |
hidden_dim, | |
nhead=nhead, | |
dim_feedforward=dim_feedforward, | |
dropout=dropout, | |
activation=enc_act, | |
) | |
self.encoder = nn.ModuleList( | |
[ | |
TransformerEncoder(copy.deepcopy(encoder_layer), num_encoder_layers) | |
for _ in range(len(use_encoder_idx)) | |
] | |
) | |
# top-down fpn | |
self.lateral_convs = nn.ModuleList() | |
self.fpn_blocks = nn.ModuleList() | |
for _ in range(len(in_channels) - 1, 0, -1): | |
self.lateral_convs.append(ConvNormLayer_fuse(hidden_dim, hidden_dim, 1, 1)) | |
self.fpn_blocks.append( | |
RepNCSPELAN4( | |
hidden_dim * 2, | |
hidden_dim, | |
hidden_dim * 2, | |
round(expansion * hidden_dim // 2), | |
round(3 * depth_mult), | |
) | |
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock) | |
) | |
# bottom-up pan | |
self.downsample_convs = nn.ModuleList() | |
self.pan_blocks = nn.ModuleList() | |
for _ in range(len(in_channels) - 1): | |
self.downsample_convs.append( | |
nn.Sequential( | |
SCDown(hidden_dim, hidden_dim, 3, 2), | |
) | |
) | |
self.pan_blocks.append( | |
RepNCSPELAN4( | |
hidden_dim * 2, | |
hidden_dim, | |
hidden_dim * 2, | |
round(expansion * hidden_dim // 2), | |
round(3 * depth_mult), | |
) | |
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock) | |
) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
if self.eval_spatial_size: | |
for idx in self.use_encoder_idx: | |
stride = self.feat_strides[idx] | |
pos_embed = self.build_2d_sincos_position_embedding( | |
self.eval_spatial_size[1] // stride, | |
self.eval_spatial_size[0] // stride, | |
self.hidden_dim, | |
self.pe_temperature, | |
) | |
setattr(self, f"pos_embed{idx}", pos_embed) | |
# self.register_buffer(f'pos_embed{idx}', pos_embed) | |
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0): | |
""" """ | |
grid_w = torch.arange(int(w), dtype=torch.float32) | |
grid_h = torch.arange(int(h), dtype=torch.float32) | |
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij") | |
assert ( | |
embed_dim % 4 == 0 | |
), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding" | |
pos_dim = embed_dim // 4 | |
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim | |
omega = 1.0 / (temperature**omega) | |
out_w = grid_w.flatten()[..., None] @ omega[None] | |
out_h = grid_h.flatten()[..., None] @ omega[None] | |
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :] | |
def forward(self, feats): | |
assert len(feats) == len(self.in_channels) | |
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)] | |
# encoder | |
if self.num_encoder_layers > 0: | |
for i, enc_ind in enumerate(self.use_encoder_idx): | |
h, w = proj_feats[enc_ind].shape[2:] | |
# flatten [B, C, H, W] to [B, HxW, C] | |
src_flatten = proj_feats[enc_ind].flatten(2).permute(0, 2, 1) | |
if self.training or self.eval_spatial_size is None: | |
pos_embed = self.build_2d_sincos_position_embedding( | |
w, h, self.hidden_dim, self.pe_temperature | |
).to(src_flatten.device) | |
else: | |
pos_embed = getattr(self, f"pos_embed{enc_ind}", None).to(src_flatten.device) | |
memory: torch.Tensor = self.encoder[i](src_flatten, pos_embed=pos_embed) | |
proj_feats[enc_ind] = ( | |
memory.permute(0, 2, 1).reshape(-1, self.hidden_dim, h, w).contiguous() | |
) | |
# broadcasting and fusion | |
inner_outs = [proj_feats[-1]] | |
for idx in range(len(self.in_channels) - 1, 0, -1): | |
feat_heigh = inner_outs[0] | |
feat_low = proj_feats[idx - 1] | |
feat_heigh = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_heigh) | |
inner_outs[0] = feat_heigh | |
upsample_feat = F.interpolate(feat_heigh, scale_factor=2.0, mode="nearest") | |
inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx]( | |
torch.concat([upsample_feat, feat_low], dim=1) | |
) | |
inner_outs.insert(0, inner_out) | |
outs = [inner_outs[0]] | |
for idx in range(len(self.in_channels) - 1): | |
feat_low = outs[-1] | |
feat_height = inner_outs[idx + 1] | |
downsample_feat = self.downsample_convs[idx](feat_low) | |
out = self.pan_blocks[idx](torch.concat([downsample_feat, feat_height], dim=1)) | |
outs.append(out) | |
return outs | |