D-FINE / src /zoo /dfine /hybrid_encoder.py
developer0hye's picture
Upload 76 files
e85fecb verified
"""
D-FINE: Redefine Regression Task of DETRs as Fine-grained Distribution Refinement
Copyright (c) 2024 The D-FINE Authors. All Rights Reserved.
---------------------------------------------------------------------------------
Modified from RT-DETR (https://github.com/lyuwenyu/RT-DETR)
Copyright (c) 2023 lyuwenyu. All Rights Reserved.
"""
import copy
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...core import register
from .utils import get_activation
__all__ = ["HybridEncoder"]
class ConvNormLayer_fuse(nn.Module):
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
super().__init__()
padding = (kernel_size - 1) // 2 if padding is None else padding
self.conv = nn.Conv2d(
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
)
self.norm = nn.BatchNorm2d(ch_out)
self.act = nn.Identity() if act is None else get_activation(act)
self.ch_in, self.ch_out, self.kernel_size, self.stride, self.g, self.padding, self.bias = (
ch_in,
ch_out,
kernel_size,
stride,
g,
padding,
bias,
)
def forward(self, x):
if hasattr(self, "conv_bn_fused"):
y = self.conv_bn_fused(x)
else:
y = self.norm(self.conv(x))
return self.act(y)
def convert_to_deploy(self):
if not hasattr(self, "conv_bn_fused"):
self.conv_bn_fused = nn.Conv2d(
self.ch_in,
self.ch_out,
self.kernel_size,
self.stride,
groups=self.g,
padding=self.padding,
bias=True,
)
kernel, bias = self.get_equivalent_kernel_bias()
self.conv_bn_fused.weight.data = kernel
self.conv_bn_fused.bias.data = bias
self.__delattr__("conv")
self.__delattr__("norm")
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor()
return kernel3x3, bias3x3
def _fuse_bn_tensor(self):
kernel = self.conv.weight
running_mean = self.norm.running_mean
running_var = self.norm.running_var
gamma = self.norm.weight
beta = self.norm.bias
eps = self.norm.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ConvNormLayer(nn.Module):
def __init__(self, ch_in, ch_out, kernel_size, stride, g=1, padding=None, bias=False, act=None):
super().__init__()
padding = (kernel_size - 1) // 2 if padding is None else padding
self.conv = nn.Conv2d(
ch_in, ch_out, kernel_size, stride, groups=g, padding=padding, bias=bias
)
self.norm = nn.BatchNorm2d(ch_out)
self.act = nn.Identity() if act is None else get_activation(act)
def forward(self, x):
return self.act(self.norm(self.conv(x)))
class SCDown(nn.Module):
def __init__(self, c1, c2, k, s):
super().__init__()
self.cv1 = ConvNormLayer_fuse(c1, c2, 1, 1)
self.cv2 = ConvNormLayer_fuse(c2, c2, k, s, c2)
def forward(self, x):
return self.cv2(self.cv1(x))
class VGGBlock(nn.Module):
def __init__(self, ch_in, ch_out, act="relu"):
super().__init__()
self.ch_in = ch_in
self.ch_out = ch_out
self.conv1 = ConvNormLayer(ch_in, ch_out, 3, 1, padding=1, act=None)
self.conv2 = ConvNormLayer(ch_in, ch_out, 1, 1, padding=0, act=None)
self.act = nn.Identity() if act is None else act
def forward(self, x):
if hasattr(self, "conv"):
y = self.conv(x)
else:
y = self.conv1(x) + self.conv2(x)
return self.act(y)
def convert_to_deploy(self):
if not hasattr(self, "conv"):
self.conv = nn.Conv2d(self.ch_in, self.ch_out, 3, 1, padding=1)
kernel, bias = self.get_equivalent_kernel_bias()
self.conv.weight.data = kernel
self.conv.bias.data = bias
self.__delattr__("conv1")
self.__delattr__("conv2")
def get_equivalent_kernel_bias(self):
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1), bias3x3 + bias1x1
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
if kernel1x1 is None:
return 0
else:
return F.pad(kernel1x1, [1, 1, 1, 1])
def _fuse_bn_tensor(self, branch: ConvNormLayer):
if branch is None:
return 0, 0
kernel = branch.conv.weight
running_mean = branch.norm.running_mean
running_var = branch.norm.running_var
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ELAN(nn.Module):
# csp-elan
def __init__(self, c1, c2, c3, c4, n=2, bias=False, act="silu", bottletype=VGGBlock):
super().__init__()
self.c = c3
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
self.cv2 = nn.Sequential(
bottletype(c3 // 2, c4, act=get_activation(act)),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv3 = nn.Sequential(
bottletype(c4, c4, act=get_activation(act)),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)
def forward(self, x):
# y = [self.cv1(x)]
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class RepNCSPELAN4(nn.Module):
# csp-elan
def __init__(self, c1, c2, c3, c4, n=3, bias=False, act="silu"):
super().__init__()
self.c = c3 // 2
self.cv1 = ConvNormLayer_fuse(c1, c3, 1, 1, bias=bias, act=act)
self.cv2 = nn.Sequential(
CSPLayer(c3 // 2, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv3 = nn.Sequential(
CSPLayer(c4, c4, n, 1, bias=bias, act=act, bottletype=VGGBlock),
ConvNormLayer_fuse(c4, c4, 3, 1, bias=bias, act=act),
)
self.cv4 = ConvNormLayer_fuse(c3 + (2 * c4), c2, 1, 1, bias=bias, act=act)
def forward_chunk(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
def forward(self, x):
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
return self.cv4(torch.cat(y, 1))
class CSPLayer(nn.Module):
def __init__(
self,
in_channels,
out_channels,
num_blocks=3,
expansion=1.0,
bias=False,
act="silu",
bottletype=VGGBlock,
):
super(CSPLayer, self).__init__()
hidden_channels = int(out_channels * expansion)
self.conv1 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
self.conv2 = ConvNormLayer_fuse(in_channels, hidden_channels, 1, 1, bias=bias, act=act)
self.bottlenecks = nn.Sequential(
*[
bottletype(hidden_channels, hidden_channels, act=get_activation(act))
for _ in range(num_blocks)
]
)
if hidden_channels != out_channels:
self.conv3 = ConvNormLayer_fuse(hidden_channels, out_channels, 1, 1, bias=bias, act=act)
else:
self.conv3 = nn.Identity()
def forward(self, x):
x_1 = self.conv1(x)
x_1 = self.bottlenecks(x_1)
x_2 = self.conv2(x)
return self.conv3(x_1 + x_2)
# transformer
class TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
):
super().__init__()
self.normalize_before = normalize_before
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout, batch_first=True)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = get_activation(activation)
@staticmethod
def with_pos_embed(tensor, pos_embed):
return tensor if pos_embed is None else tensor + pos_embed
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
residual = src
if self.normalize_before:
src = self.norm1(src)
q = k = self.with_pos_embed(src, pos_embed)
src, _ = self.self_attn(q, k, value=src, attn_mask=src_mask)
src = residual + self.dropout1(src)
if not self.normalize_before:
src = self.norm1(src)
residual = src
if self.normalize_before:
src = self.norm2(src)
src = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = residual + self.dropout2(src)
if not self.normalize_before:
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(num_layers)])
self.num_layers = num_layers
self.norm = norm
def forward(self, src, src_mask=None, pos_embed=None) -> torch.Tensor:
output = src
for layer in self.layers:
output = layer(output, src_mask=src_mask, pos_embed=pos_embed)
if self.norm is not None:
output = self.norm(output)
return output
@register()
class HybridEncoder(nn.Module):
__share__ = [
"eval_spatial_size",
]
def __init__(
self,
in_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
hidden_dim=256,
nhead=8,
dim_feedforward=1024,
dropout=0.0,
enc_act="gelu",
use_encoder_idx=[2],
num_encoder_layers=1,
pe_temperature=10000,
expansion=1.0,
depth_mult=1.0,
act="silu",
eval_spatial_size=None,
):
super().__init__()
self.in_channels = in_channels
self.feat_strides = feat_strides
self.hidden_dim = hidden_dim
self.use_encoder_idx = use_encoder_idx
self.num_encoder_layers = num_encoder_layers
self.pe_temperature = pe_temperature
self.eval_spatial_size = eval_spatial_size
self.out_channels = [hidden_dim for _ in range(len(in_channels))]
self.out_strides = feat_strides
# channel projection
self.input_proj = nn.ModuleList()
for in_channel in in_channels:
proj = nn.Sequential(
OrderedDict(
[
("conv", nn.Conv2d(in_channel, hidden_dim, kernel_size=1, bias=False)),
("norm", nn.BatchNorm2d(hidden_dim)),
]
)
)
self.input_proj.append(proj)
# encoder transformer
encoder_layer = TransformerEncoderLayer(
hidden_dim,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
activation=enc_act,
)
self.encoder = nn.ModuleList(
[
TransformerEncoder(copy.deepcopy(encoder_layer), num_encoder_layers)
for _ in range(len(use_encoder_idx))
]
)
# top-down fpn
self.lateral_convs = nn.ModuleList()
self.fpn_blocks = nn.ModuleList()
for _ in range(len(in_channels) - 1, 0, -1):
self.lateral_convs.append(ConvNormLayer_fuse(hidden_dim, hidden_dim, 1, 1))
self.fpn_blocks.append(
RepNCSPELAN4(
hidden_dim * 2,
hidden_dim,
hidden_dim * 2,
round(expansion * hidden_dim // 2),
round(3 * depth_mult),
)
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
)
# bottom-up pan
self.downsample_convs = nn.ModuleList()
self.pan_blocks = nn.ModuleList()
for _ in range(len(in_channels) - 1):
self.downsample_convs.append(
nn.Sequential(
SCDown(hidden_dim, hidden_dim, 3, 2),
)
)
self.pan_blocks.append(
RepNCSPELAN4(
hidden_dim * 2,
hidden_dim,
hidden_dim * 2,
round(expansion * hidden_dim // 2),
round(3 * depth_mult),
)
# CSPLayer(hidden_dim * 2, hidden_dim, round(3 * depth_mult), act=act, expansion=expansion, bottletype=VGGBlock)
)
self._reset_parameters()
def _reset_parameters(self):
if self.eval_spatial_size:
for idx in self.use_encoder_idx:
stride = self.feat_strides[idx]
pos_embed = self.build_2d_sincos_position_embedding(
self.eval_spatial_size[1] // stride,
self.eval_spatial_size[0] // stride,
self.hidden_dim,
self.pe_temperature,
)
setattr(self, f"pos_embed{idx}", pos_embed)
# self.register_buffer(f'pos_embed{idx}', pos_embed)
@staticmethod
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
""" """
grid_w = torch.arange(int(w), dtype=torch.float32)
grid_h = torch.arange(int(h), dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
assert (
embed_dim % 4 == 0
), "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1.0 / (temperature**omega)
out_w = grid_w.flatten()[..., None] @ omega[None]
out_h = grid_h.flatten()[..., None] @ omega[None]
return torch.concat([out_w.sin(), out_w.cos(), out_h.sin(), out_h.cos()], dim=1)[None, :, :]
def forward(self, feats):
assert len(feats) == len(self.in_channels)
proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
# encoder
if self.num_encoder_layers > 0:
for i, enc_ind in enumerate(self.use_encoder_idx):
h, w = proj_feats[enc_ind].shape[2:]
# flatten [B, C, H, W] to [B, HxW, C]
src_flatten = proj_feats[enc_ind].flatten(2).permute(0, 2, 1)
if self.training or self.eval_spatial_size is None:
pos_embed = self.build_2d_sincos_position_embedding(
w, h, self.hidden_dim, self.pe_temperature
).to(src_flatten.device)
else:
pos_embed = getattr(self, f"pos_embed{enc_ind}", None).to(src_flatten.device)
memory: torch.Tensor = self.encoder[i](src_flatten, pos_embed=pos_embed)
proj_feats[enc_ind] = (
memory.permute(0, 2, 1).reshape(-1, self.hidden_dim, h, w).contiguous()
)
# broadcasting and fusion
inner_outs = [proj_feats[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = proj_feats[idx - 1]
feat_heigh = self.lateral_convs[len(self.in_channels) - 1 - idx](feat_heigh)
inner_outs[0] = feat_heigh
upsample_feat = F.interpolate(feat_heigh, scale_factor=2.0, mode="nearest")
inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
torch.concat([upsample_feat, feat_low], dim=1)
)
inner_outs.insert(0, inner_out)
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsample_convs[idx](feat_low)
out = self.pan_blocks[idx](torch.concat([downsample_feat, feat_height], dim=1))
outs.append(out)
return outs