File size: 35,690 Bytes
f639c56
dc2d325
24f29f0
f639c56
 
1fe11cb
 
 
 
f639c56
1fe11cb
 
 
 
f639c56
 
 
 
98aba2a
f639c56
 
 
3c8de53
98aba2a
f639c56
 
 
 
98aba2a
 
f639c56
 
 
 
 
 
 
 
1fe11cb
 
 
 
 
 
 
 
 
705fc3e
1fe11cb
 
 
 
 
 
 
 
 
 
 
705fc3e
1fe11cb
 
 
 
 
 
 
 
 
 
 
 
 
 
705fc3e
1fe11cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705fc3e
 
 
1fe11cb
 
705fc3e
 
 
 
 
 
 
 
 
 
 
 
 
1fe11cb
 
 
 
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7cbe3
 
 
 
 
 
 
 
f639c56
 
 
 
 
2c7cbe3
 
 
 
 
 
 
 
 
 
 
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7cbe3
 
 
f639c56
 
2c7cbe3
 
f639c56
2c7cbe3
 
 
f639c56
 
2c7cbe3
f639c56
 
 
6380113
 
f639c56
2c7cbe3
 
 
 
 
 
 
f639c56
 
2c7cbe3
f639c56
 
2c7cbe3
f639c56
 
 
 
 
2c7cbe3
 
 
 
 
 
6380113
3c8de53
6380113
 
 
 
 
 
 
 
 
 
 
3c8de53
 
 
 
 
 
 
 
 
6380113
 
 
 
 
 
 
3c8de53
6380113
 
 
 
 
 
 
3c8de53
 
 
6380113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
71b2232
 
 
 
8a155b4
71b2232
8a155b4
71b2232
8a155b4
71b2232
 
8a155b4
 
 
 
 
 
 
 
 
 
 
71b2232
8a155b4
f639c56
 
71b2232
 
 
 
 
 
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d5643
 
332a246
 
 
a8d5643
332a246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8d5643
 
a1d301f
3c8de53
938934c
 
332a246
 
 
 
3c8de53
332a246
3c8de53
 
 
 
 
 
332a246
3c8de53
 
a1d301f
a8d5643
f639c56
 
 
 
 
 
 
 
 
a1d301f
 
938934c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
 
a1d301f
 
 
 
2de8ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
a8d5643
f639c56
 
2de8ed1
a8d5643
f639c56
1b58e4c
 
1fe11cb
 
1b58e4c
1fe11cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b58e4c
 
a1d301f
 
 
 
2de8ed1
 
 
 
332a246
e7f3f46
86da53d
 
 
 
8c64153
86da53d
8c64153
86da53d
8c64153
86da53d
 
 
 
 
 
f639c56
 
 
a1d301f
8c64153
01f6487
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332a246
705fc3e
 
 
 
 
 
 
 
a22ae4e
705fc3e
 
 
 
01f6487
 
 
705fc3e
332a246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b58e4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f639c56
 
 
 
 
 
713a6e6
 
 
 
f639c56
a8d5643
713a6e6
 
 
a8d5643
713a6e6
a8d5643
332a246
 
 
 
 
 
 
 
 
 
 
 
713a6e6
332a246
713a6e6
332a246
e0bf1a3
a8d5643
332a246
 
 
e0bf1a3
332a246
 
 
 
e0bf1a3
 
 
6aebc39
 
 
 
 
 
332a246
 
e0bf1a3
332a246
 
6aebc39
332a246
 
e0bf1a3
713a6e6
 
 
332a246
 
713a6e6
 
 
 
 
 
 
332a246
713a6e6
 
 
332a246
 
713a6e6
 
 
 
 
 
 
332a246
713a6e6
 
 
f639c56
713a6e6
 
f639c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2a812
 
f639c56
 
 
cc2a812
f639c56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
import os
import sys
import re
import gradio as gr
import json
import tempfile
import base64
import io
from typing import List, Dict, Any, Optional, Tuple, Union
import logging
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

try:
    # Intentar importar dependencias opcionales
    from langchain_community.agent_toolkits import create_sql_agent
    from langchain_community.agent_toolkits.sql.toolkit import SQLDatabaseToolkit
    from langchain_community.utilities import SQLDatabase
    from langchain_google_genai import ChatGoogleGenerativeAI
    from langchain.agents.agent_types import AgentType
    from langchain.memory import ConversationBufferWindowMemory
    from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
    import pymysql
    from dotenv import load_dotenv
    
    DEPENDENCIES_AVAILABLE = True
except ImportError as e:
    logger.warning(f"Some dependencies are not available: {e}")
    DEPENDENCIES_AVAILABLE = False

# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configure logging
logging.basicConfig(level=logging.INFO)

def generate_chart(data: Union[Dict, List[Dict], pd.DataFrame], 
                 chart_type: str, 
                 x: str, 
                 y: str = None, 
                 title: str = "", 
                 x_label: str = None, 
                 y_label: str = None) -> str:
    """
    Generate a chart from data and return it as a base64 encoded image.
    
    Args:
        data: The data to plot (can be a list of dicts or a pandas DataFrame)
        chart_type: Type of chart to generate (bar, line, pie, scatter, histogram)
        x: Column name for x-axis
        y: Column name for y-axis (not needed for pie charts)
        title: Chart title
        x_label: Label for x-axis
        y_label: Label for y-axis
        
    Returns:
        Markdown string with embedded image
    """
    try:
        # Convert data to DataFrame if it's a list of dicts
        if isinstance(data, list):
            df = pd.DataFrame(data)
        elif isinstance(data, dict):
            df = pd.DataFrame([data])
        else:
            df = data
            
        if not isinstance(df, pd.DataFrame):
            return "Error: Data must be a dictionary, list of dictionaries, or pandas DataFrame"
            
        # Generate the appropriate chart type
        fig = None
        if chart_type == 'bar':
            fig = px.bar(df, x=x, y=y, title=title)
        elif chart_type == 'line':
            fig = px.line(df, x=x, y=y, title=title)
        elif chart_type == 'pie':
            fig = px.pie(df, names=x, values=y, title=title)
        elif chart_type == 'scatter':
            fig = px.scatter(df, x=x, y=y, title=title)
        elif chart_type == 'histogram':
            fig = px.histogram(df, x=x, title=title)
        else:
            return "Error: Unsupported chart type. Use 'bar', 'line', 'pie', 'scatter', or 'histogram'"
        
        # Update layout
        fig.update_layout(
            xaxis_title=x_label or x,
            yaxis_title=y_label or (y if y != x else ''),
            title=title or f"{chart_type.capitalize()} Chart of {x} vs {y}" if y else f"{chart_type.capitalize()} Chart of {x}",
            template="plotly_white",
            margin=dict(l=20, r=20, t=40, b=20),
            height=400
        )
        
        # Save the figure to a temporary file
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
        fig.write_image(temp_file.name, format='png', engine='kaleido')
        
        # Read the image file and encode as base64
        with open(temp_file.name, 'rb') as img_file:
            img_base64 = base64.b64encode(img_file.read()).decode('utf-8')
        
        # Clean up the temporary file
        os.unlink(temp_file.name)
        
        # Return as markdown image
        return f'<img src="data:image/png;base64,{img_base64}" style="max-width:100%;"/>'
        
    except Exception as e:
        error_msg = f"Error generating chart: {str(e)}"
        logger.error(error_msg, exc_info=True)
        return f"<div style='color: red;'>{error_msg}</div>"
logger = logging.getLogger(__name__)

def check_environment():
    """Verifica si el entorno está configurado correctamente."""
    if not DEPENDENCIES_AVAILABLE:
        return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
    
    # Verificar si estamos en un entorno con variables de entorno
    required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
    missing_vars = [var for var in required_vars if not os.getenv(var)]
    
    if missing_vars:
        return False, f"Missing required environment variables: {', '.join(missing_vars)}"
    
    return True, "Environment is properly configured"

def setup_database_connection():
    """Intenta establecer una conexión a la base de datos."""
    if not DEPENDENCIES_AVAILABLE:
        return None, "Dependencies not available"
        
    try:
        load_dotenv(override=True)
        
        # Debug: Log all environment variables (without sensitive values)
        logger.info("Environment variables:")
        for key, value in os.environ.items():
            if any(s in key.lower() for s in ['pass', 'key', 'secret']):
                logger.info(f"  {key}: {'*' * 8} (hidden for security)")
            else:
                logger.info(f"  {key}: {value}")
        
        db_user = os.getenv("DB_USER")
        db_password = os.getenv("DB_PASSWORD")
        db_host = os.getenv("DB_HOST")
        db_name = os.getenv("DB_NAME")
        
        # Debug: Log database connection info (without password)
        logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
        if not all([db_user, db_password, db_host, db_name]):
            missing = [var for var, val in [
                ("DB_USER", db_user),
                ("DB_PASSWORD", "*" if db_password else ""),
                ("DB_HOST", db_host),
                ("DB_NAME", db_name)
            ] if not val]
            logger.error(f"Missing required database configuration: {', '.join(missing)}")
            return None, f"Missing database configuration: {', '.join(missing)}"
        
        if not all([db_user, db_password, db_host, db_name]):
            return None, "Missing database configuration"
            
        logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
        
        # Probar conexión
        connection = pymysql.connect(
            host=db_host,
            user=db_user,
            password=db_password,
            database=db_name,
            connect_timeout=5,
            cursorclass=pymysql.cursors.DictCursor
        )
        connection.close()
        
        # Si la conexión es exitosa, crear motor SQLAlchemy
        db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
        logger.info("Database connection successful")
        return SQLDatabase.from_uri(db_uri), ""
        
    except Exception as e:
        error_msg = f"Error connecting to database: {str(e)}"
        logger.error(error_msg)
        return None, error_msg

def initialize_llm():
    """Inicializa el modelo de lenguaje."""
    if not DEPENDENCIES_AVAILABLE:
        error_msg = "Dependencies not available. Make sure all required packages are installed."
        logger.error(error_msg)
        return None, error_msg
        
    google_api_key = os.getenv("GOOGLE_API_KEY")
    logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
    
    if not google_api_key:
        error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
        logger.error(error_msg)
        return None, error_msg
        
    try:
        logger.info("Initializing Google Generative AI...")
        llm = ChatGoogleGenerativeAI(
            model="gemini-2.0-flash",
            temperature=0,
            google_api_key=google_api_key,
            convert_system_message_to_human=True  # Convert system messages to human messages
        )
        
        # Test the model with a simple prompt
        test_prompt = "Hello, this is a test."
        logger.info(f"Testing model with prompt: {test_prompt}")
        test_response = llm.invoke(test_prompt)
        logger.info(f"Model test response: {str(test_response)[:100]}...")  # Log first 100 chars
        
        logger.info("Google Generative AI initialized successfully")
        return llm, ""
        
    except Exception as e:
        error_msg = f"Error initializing Google Generative AI: {str(e)}"
        logger.error(error_msg, exc_info=True)  # Include full stack trace
        return None, error_msg

def create_agent():
    """Crea el agente SQL si es posible."""
    if not DEPENDENCIES_AVAILABLE:
        error_msg = "Dependencies not available. Please check if all required packages are installed."
        logger.error(error_msg)
        return None, error_msg
    
    logger.info("Starting agent creation process...")
    
def create_agent(llm, db_connection):
    """Create and return a SQL database agent with conversation memory."""
    if not llm:
        error_msg = "Cannot create agent: LLM is not available"
        logger.error(error_msg)
        return None, error_msg
    
    if not db_connection:
        error_msg = "Cannot create agent: Database connection is not available"
        logger.error(error_msg)
        return None, error_msg
        
    try:
        logger.info("Creating SQL agent with memory...")
        
        # Create conversation memory
        memory = ConversationBufferWindowMemory(
            memory_key="chat_history",
            k=5,  # Keep last 5 message exchanges in memory
            return_messages=True,
            output_key="output"
        )
        
        # Create the database toolkit with additional configuration
        toolkit = SQLDatabaseToolkit(
            db=db_connection,
            llm=llm
        )
        
        # Create the agent with memory and more detailed configuration
        agent = create_sql_agent(
            llm=llm,
            toolkit=toolkit,
            agent_type=AgentType.OPENAI_FUNCTIONS,
            verbose=True,
            handle_parsing_errors=True,  # Better error handling for parsing
            max_iterations=10,  # Limit the number of iterations
            early_stopping_method="generate",  # Stop early if the agent is stuck
            memory=memory,  # Add memory to the agent
            return_intermediate_steps=True  # Important for memory to work properly
        )
        
        # Test the agent with a simple query
        logger.info("Testing agent with a simple query...")
        try:
            test_query = "SELECT 1"
            test_result = agent.run(test_query)
            logger.info(f"Agent test query successful: {str(test_result)[:200]}...")
        except Exception as e:
            logger.warning(f"Agent test query failed (this might be expected): {str(e)}")
            # Continue even if test fails, as it might be due to model limitations
        
        logger.info("SQL agent created successfully")
        return agent, ""
        
    except Exception as e:
        error_msg = f"Error creating SQL agent: {str(e)}"
        logger.error(error_msg, exc_info=True)
        return None, error_msg

# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir()}")

# Verificar las variables de entorno
logger.info("Checking environment variables...")
for var in ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]:
    logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")

# Initialize components
logger.info("Initializing database connection...")
db_connection, db_error = setup_database_connection()
if db_error:
    logger.error(f"Failed to initialize database: {db_error}")

logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if llm_error:
    logger.error(f"Failed to initialize language model: {llm_error}")

logger.info("Initializing agent...")
agent, agent_error = create_agent(llm, db_connection)
db_connected = agent is not None

if agent:
    logger.info("Agent initialized successfully")
else:
    logger.error(f"Failed to initialize agent: {agent_error}")

logger.info("="*50)

def extract_sql_query(text):
    """Extrae consultas SQL del texto usando expresiones regulares."""
    if not text:
        return None
    
    # Buscar código SQL entre backticks
    sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL)
    if sql_match:
        return sql_match.group(1).strip()
    
    # Si no hay backticks, buscar una consulta SQL simple
    sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL)
    if sql_match:
        return sql_match.group(0).strip()
    
    return None

def execute_sql_query(query, db_connection):
    """Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
    if not db_connection:
        return "Error: No hay conexión a la base de datos"
        
    try:
        with db_connection._engine.connect() as connection:
            result = connection.execute(query)
            rows = result.fetchall()
            
            # Convertir los resultados a un formato legible
            if not rows:
                return "La consulta no devolvió resultados"
                
            # Si es un solo resultado, devolverlo directamente
            if len(rows) == 1 and len(rows[0]) == 1:
                return str(rows[0][0])
                
            # Si hay múltiples filas, formatear como tabla
            try:
                import pandas as pd
                df = pd.DataFrame(rows)
                return df.to_markdown(index=False)
            except ImportError:
                # Si pandas no está disponible, usar formato simple
                return "\n".join([str(row) for row in rows])
                
    except Exception as e:
        return f"Error ejecutando la consulta: {str(e)}"

def generate_plot(data, x_col, y_col, title, x_label, y_label):
    """Generate a plot from data and return the file path."""
    plt.figure(figsize=(10, 6))
    plt.bar(data[x_col], data[y_col])
    plt.title(title)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    # Save to a temporary file
    temp_dir = tempfile.mkdtemp()
    plot_path = os.path.join(temp_dir, "plot.png")
    plt.savefig(plot_path)
    plt.close()
    
    return plot_path

def convert_to_messages_format(chat_history):
    """Convert chat history to the format expected by Gradio 5.x"""
    if not chat_history:
        return []
        
    messages = []
    
    # If the first element is a list, assume it's in the old format
    if isinstance(chat_history[0], list):
        for msg in chat_history:
            if isinstance(msg, list) and len(msg) == 2:
                # Format: [user_msg, bot_msg]
                user_msg, bot_msg = msg
                if user_msg:
                    messages.append({"role": "user", "content": user_msg})
                if bot_msg:
                    messages.append({"role": "assistant", "content": bot_msg})
    else:
        # Assume it's already in the correct format or can be used as is
        for msg in chat_history:
            if isinstance(msg, dict) and "role" in msg and "content" in msg:
                messages.append(msg)
            elif isinstance(msg, str):
                # If it's a string, assume it's a user message
                messages.append({"role": "user", "content": msg})
    
    return messages

async def stream_agent_response(question: str, chat_history: List) -> List[Dict]:
    """Procesa la pregunta del usuario y devuelve la respuesta del agente con memoria de conversación."""
    global agent  # Make sure we can modify the agent's memory
    
    # Initialize response
    response_text = ""
    messages = []
    
    # Add previous chat history in the correct format for the agent
    if chat_history:
        # Convert chat history to the format expected by the agent's memory
        for msg in chat_history:
            if msg["role"] == "user":
                messages.append(HumanMessage(content=msg["content"]))
            elif msg["role"] == "assistant":
                messages.append(AIMessage(content=msg["content"]))
    
    # Add current user's question
    user_message = HumanMessage(content=question)
    messages.append(user_message)
    
    if not agent:
        error_msg = (
            "## ⚠️ Error: Agente no inicializado\n\n"
            "No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
            "1. Todas las variables de entorno estén configuradas correctamente\n"
            "2. La base de datos esté accesible\n"
            f"3. El modelo de lenguaje esté disponible\n\n"
            f"Error: {agent_error}"
        )
        assistant_message = {"role": "assistant", "content": error_msg}
        return [assistant_message]
        
    # Update the agent's memory with the full conversation history
    try:
        # Clear existing memory
        if hasattr(agent, 'memory') and agent.memory is not None:
            agent.memory.clear()
            
        # Add all messages to memory
        for i in range(0, len(messages)-1, 2):  # Process in pairs (user, assistant)
            if i+1 < len(messages):
                agent.memory.save_context(
                    {"input": messages[i].content},
                    {"output": messages[i+1].content}
                )
    except Exception as e:
        logger.error(f"Error updating agent memory: {str(e)}", exc_info=True)
    
    try:
        # Add empty assistant message that will be updated
        assistant_message = {"role": "assistant", "content": ""}
        messages.append(assistant_message)
        
        # Execute the agent with proper error handling
        try:
            response = await agent.ainvoke({"input": question, "chat_history": chat_history})
            logger.info(f"Agent response type: {type(response)}")
            logger.info(f"Agent response content: {str(response)[:500]}...")
            
            # Handle different response formats
            if hasattr(response, 'output') and response.output:
                response_text = response.output
            elif isinstance(response, str):
                response_text = response
            elif hasattr(response, 'get') and callable(response.get) and 'output' in response:
                response_text = response['output']
            else:
                response_text = str(response)
            
            logger.info(f"Extracted response text: {response_text[:200]}...")
            
            # Check if the response contains an SQL query
            sql_query = extract_sql_query(response_text)
            if sql_query:
                logger.info(f"Detected SQL query: {sql_query}")
                # Execute the query and update the response
                db_connection, _ = setup_database_connection()
                if db_connection:
                    query_result = execute_sql_query(sql_query, db_connection)
                    
                    # Add the query and its result to the response
                    response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
                    
                    # Try to generate a chart if the result is tabular
                    try:
                        if isinstance(query_result, str) and '|' in query_result and '---' in query_result:
                            # Convert markdown table to DataFrame
                            from io import StringIO
                            import re
                            
                            # Clean up the markdown table
                            lines = [line.strip() for line in query_result.split('\n') 
                                    if line.strip() and '---' not in line and '|' in line]
                            if len(lines) > 1:  # At least header + 1 data row
                                # Get column names from the first line
                                columns = [col.strip() for col in lines[0].split('|')[1:-1]]
                                # Get data rows
                                data = []
                                for line in lines[1:]:
                                    values = [val.strip() for val in line.split('|')[1:-1]]
                                    if len(values) == len(columns):
                                        data.append(dict(zip(columns, values)))
                                
                                if data and len(columns) >= 2:
                                    # Generate a chart based on the data
                                    chart_type = 'bar'  # Default chart type
                                    if len(columns) == 2:
                                        # Simple bar chart for two columns
                                        chart_html = generate_chart(
                                            data=data,
                                            chart_type=chart_type,
                                            x=columns[0],
                                            y=columns[1],
                                            title=f"{columns[1]} por {columns[0]}",
                                            x_label=columns[0],
                                            y_label=columns[1]
                                        )
                                        response_text += f"\n\n### 📊 Visualización:\n{chart_html}"
                                    elif len(columns) > 2:
                                        # For multiple columns, create a line chart
                                        chart_html = generate_chart(
                                            data=data,
                                            chart_type='line',
                                            x=columns[0],
                                            y=columns[1],
                                            title=f"{', '.join(columns[1:])} por {columns[0]}",
                                            x_label=columns[0],
                                            y_label=", ".join(columns[1:])
                                        )
                                        response_text += f"\n\n### 📊 Visualización:\n{chart_html}"
                    except Exception as e:
                        logger.error(f"Error generating chart: {str(e)}", exc_info=True)
                        # Don't fail the whole request if chart generation fails
                        response_text += "\n\n⚠️ No se pudo generar la visualización de los datos."
                else:
                    response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
            
            # Update the assistant's message with the response
            assistant_message["content"] = response_text
            
        except Exception as e:
            error_msg = f"Error al ejecutar el agente: {str(e)}"
            logger.error(error_msg, exc_info=True)
            assistant_message["content"] = f"## ❌ Error\n\n{error_msg}"
        
        # Return the message in the correct format for Gradio Chatbot
        # Format: list of tuples where each tuple is (user_msg, bot_msg)
        # For a single response, we return [(None, message)]
        message_content = ""
        
        if isinstance(assistant_message, dict) and "content" in assistant_message:
            message_content = assistant_message["content"]
        elif isinstance(assistant_message, str):
            message_content = assistant_message
        else:
            message_content = str(assistant_message)
            
        # Ensure we return a list of tuples in the format Gradio expects
        # Each message should be a tuple of (user_msg, bot_msg)
        # For assistant messages, user_msg is None
        return [(None, message_content)]
        
    except Exception as e:
        error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
        logger.error(f"Error in stream_agent_response: {str(e)}", exc_info=True)
        # Ensure we return in the correct format: [(user_msg, bot_msg)]
        return [(None, error_msg)]

# Custom CSS for the app
custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: 0 auto !important;
    font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}

#chatbot {
    min-height: 500px;
    border: 1px solid #e0e0e0;
    border-radius: 8px;
    margin-bottom: 20px;
    padding: 20px;
    background-color: #f9f9f9;
}

.user-message, .bot-message {
    padding: 12px 16px;
    border-radius: 18px;
    margin: 8px 0;
    max-width: 80%;
    line-height: 1.5;
}

.user-message {
    background-color: #007bff;
    color: white;
    margin-left: auto;
    border-bottom-right-radius: 4px;
}

.bot-message {
    background-color: #f1f1f1;
    color: #333;
    margin-right: auto;
    border-bottom-left-radius: 4px;
}

#question-input textarea {
    min-height: 50px !important;
    border-radius: 8px !important;
    padding: 12px !important;
    font-size: 16px !important;
}

#send-button {
    height: 100%;
    background-color: #007bff !important;
    color: white !important;
    border: none !important;
    border-radius: 8px !important;
    font-weight: 500 !important;
    transition: background-color 0.2s !important;
}

#send-button:hover {
    background-color: #0056b3 !important;
}

.status-message {
    text-align: center;
    color: #666;
    font-style: italic;
    margin: 10px 0;
}
"""

def create_ui():
    """Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
    # Verificar el estado del entorno
    env_ok, env_message = check_environment()
    
    # Crear el tema personalizado
    theme = gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="indigo",
        neutral_hue="slate"
    )
    
    with gr.Blocks(
        css=custom_css,
        title="Asistente de Base de Datos SQL",
        theme=theme
    ) as demo:
        # Encabezado
        gr.Markdown("""
        # 🤖 Asistente de Base de Datos SQL
        
        Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
        """)
        
        # Mensaje de estado
        if not env_ok:
            gr.Warning("⚠️ " + env_message)
        
        # Create the chat interface
        with gr.Row():
            chatbot = gr.Chatbot(
                [],
                elem_id="chatbot",
                bubble_full_width=False,
                avatar_images=(
                    None,
                    (os.path.join(os.path.dirname(__file__), "logo.svg")),
                ),
                height=600,
                render_markdown=True,  # Enable markdown rendering
                show_label=False,
                show_share_button=False,
                container=True,
                layout="panel"  # Better layout for messages
            )
        
        # Input area
        with gr.Row():
            question_input = gr.Textbox(
                label="",
                placeholder="Escribe tu pregunta aquí...",
                container=False,
                scale=5,
                min_width=300,
                max_lines=3,
                autofocus=True,
                elem_id="question-input"
            )
            submit_button = gr.Button(
                "Enviar",
                variant="primary",
                min_width=100,
                scale=1,
                elem_id="send-button"
            )
        
        # System status
        with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
            if not DEPENDENCIES_AVAILABLE:
                gr.Markdown("""
                ## ❌ Dependencias faltantes
                
                Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
                
                ```bash
                pip install -r requirements.txt
                ```
                """)
            else:
                if not agent:
                    gr.Markdown(f"""
                    ## ⚠️ Configuración incompleta
                    
                    No se pudo inicializar el agente de base de datos. Por favor, verifica que:
                    
                    1. Todas las variables de entorno estén configuradas correctamente
                    2. La base de datos esté accesible
                    3. La API de Google Gemini esté configurada
                    
                    **Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
                    
                    ### Configuración local
                    
                    Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
                    
                    ```
                    DB_USER=tu_usuario
                    DB_PASSWORD=tu_contraseña
                    DB_HOST=tu_servidor
                    DB_NAME=tu_base_de_datos
                    GOOGLE_API_KEY=tu_api_key_de_google
                    ```
                    """)
                else:
                    if os.getenv('SPACE_ID'):
                        # Modo demo en Hugging Face Spaces
                        gr.Markdown("""
                        ## 🚀 Modo Demo
                        
                        Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
                        
                        1. Clona este espacio en tu cuenta de Hugging Face
                        2. Configura las variables de entorno en la configuración del espacio:
                           - `DB_USER`: Tu usuario de base de datos
                           - `DB_PASSWORD`: Tu contraseña de base de datos
                           - `DB_HOST`: La dirección del servidor de base de datos
                           - `DB_NAME`: El nombre de la base de datos
                           - `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
                        
                        **Nota:** Actualmente estás en modo de solo demostración.
                        """)
                    else:
                        gr.Markdown("""
                        ## ✅ Sistema listo
                        
                        El asistente está listo para responder tus preguntas sobre la base de datos.
                        """)
        
        # Hidden component for streaming output
        streaming_output_display = gr.Textbox(visible=False)
        
        return demo, chatbot, question_input, submit_button, streaming_output_display

def create_application():
    """Create and configure the Gradio application."""
    # Create the UI components
    demo, chatbot, question_input, submit_button, streaming_output_display = create_ui()
    
    def user_message(user_input: str, chat_history: List[Dict]) -> Tuple[str, List[Dict]]:
        """Add user message to chat history and clear input."""
        if not user_input.strip():
            return "", chat_history
            
        logger.info(f"User message: {user_input}")
        
        # Initialize chat history if needed
        if chat_history is None:
            chat_history = []
        
        # Add user message
        chat_history.append({"role": "user", "content": user_input})
        
        # Add empty assistant response
        chat_history.append({"role": "assistant", "content": ""})
        
        # Clear the input
        return "", chat_history
    
    async def bot_response(chat_history: List[Dict]) -> List[Dict]:
        """Get bot response and update chat history."""
        if not chat_history or chat_history[-1]["role"] != "assistant":
            return chat_history
        
        try:
            # Get the user's question (second to last message)
            if len(chat_history) < 2:
                return chat_history
                
            question = chat_history[-2]["content"]
            logger.info(f"Processing question: {question}")
            
            # Call the agent and get the response
            response = await stream_agent_response(question, chat_history[:-2])
            
            # Convert the response to the correct format for the chat history
            if isinstance(response, list) and response:
                # The response is already in the format [(None, assistant_message)]
                # Extract the assistant message and update the chat history
                assistant_message = response[0][1] if isinstance(response[0], (list, tuple)) and len(response[0]) > 1 else str(response[0])
                chat_history[-1]["content"] = assistant_message
            
            logger.info("Response generation complete")
            return chat_history
            
        except Exception as e:
            error_msg = f"## ❌ Error\n\nError al procesar la solicitud:\n\n```\n{str(e)}\n```"
            logger.error(error_msg, exc_info=True)
            chat_history[-1]["content"] = error_msg
            return chat_history
    
    # Event handlers
    with demo:
        # Handle form submission
        msg_submit = question_input.submit(
            fn=user_message,
            inputs=[question_input, chatbot],
            outputs=[question_input, chatbot],
            queue=True
        ).then(
            fn=bot_response,
            inputs=[chatbot],
            outputs=[chatbot],
            api_name="ask"
        )
        
        # Handle button click
        btn_click = submit_button.click(
            fn=user_message,
            inputs=[question_input, chatbot],
            outputs=[question_input, chatbot],
            queue=True
        ).then(
            fn=bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
    
    return demo

# Create the application
demo = create_application()

# Configuración para Hugging Face Spaces
def get_app():
    """Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
    # Verificar si estamos en un entorno de Hugging Face Spaces
    if os.getenv('SPACE_ID'):
        # Configuración específica para Spaces
        demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
        demo.description = """
        Este es un demo del asistente de base de datos SQL. 
        Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
        """
    
    return demo

# Para desarrollo local
if __name__ == "__main__":
    # Configuración para desarrollo local - versión simplificada para Gradio 5.x
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        debug=True,
        share=False
    )