File size: 24,642 Bytes
f639c56 dc2d325 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 2c7cbe3 f639c56 71b2232 f639c56 71b2232 f639c56 a8d5643 f639c56 a8d5643 f639c56 a8d5643 deeeba1 f639c56 a8d5643 f639c56 a8d5643 f639c56 a8d5643 f639c56 a8d5643 f639c56 a8d5643 f639c56 1b58e4c f639c56 a8d5643 f639c56 a8d5643 1b58e4c f639c56 1b58e4c f639c56 713a6e6 f639c56 92eb8be 713a6e6 f639c56 713a6e6 f639c56 a8d5643 713a6e6 a8d5643 713a6e6 a8d5643 713a6e6 5bd02e3 713a6e6 a8d5643 713a6e6 a8d5643 713a6e6 a8d5643 5bd02e3 713a6e6 f639c56 713a6e6 f639c56 cc2a812 f639c56 cc2a812 f639c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import os
import sys
import gradio as gr
import json
from typing import List, Dict, Any, Optional, Tuple
import logging
try:
# Intentar importar dependencias opcionales
from langchain_community.agent_toolkits import create_sql_agent
from langchain_community.utilities import SQLDatabase
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents.agent_types import AgentType
import pymysql
from dotenv import load_dotenv
DEPENDENCIES_AVAILABLE = True
except ImportError:
# Si faltan dependencias, la aplicación funcionará en modo demo
DEPENDENCIES_AVAILABLE = False
# Configuración de logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_environment():
"""Verifica si el entorno está configurado correctamente."""
if not DEPENDENCIES_AVAILABLE:
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt"
# Verificar si estamos en un entorno con variables de entorno
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
missing_vars = [var for var in required_vars if not os.getenv(var)]
if missing_vars:
return False, f"Missing required environment variables: {', '.join(missing_vars)}"
return True, "Environment is properly configured"
def setup_database_connection():
"""Intenta establecer una conexión a la base de datos."""
if not DEPENDENCIES_AVAILABLE:
return None, "Dependencies not available"
try:
load_dotenv(override=True)
# Debug: Log all environment variables (without sensitive values)
logger.info("Environment variables:")
for key, value in os.environ.items():
if any(s in key.lower() for s in ['pass', 'key', 'secret']):
logger.info(f" {key}: {'*' * 8} (hidden for security)")
else:
logger.info(f" {key}: {value}")
db_user = os.getenv("DB_USER")
db_password = os.getenv("DB_PASSWORD")
db_host = os.getenv("DB_HOST")
db_name = os.getenv("DB_NAME")
# Debug: Log database connection info (without password)
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}")
if not all([db_user, db_password, db_host, db_name]):
missing = [var for var, val in [
("DB_USER", db_user),
("DB_PASSWORD", "*" if db_password else ""),
("DB_HOST", db_host),
("DB_NAME", db_name)
] if not val]
logger.error(f"Missing required database configuration: {', '.join(missing)}")
return None, f"Missing database configuration: {', '.join(missing)}"
if not all([db_user, db_password, db_host, db_name]):
return None, "Missing database configuration"
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}")
# Probar conexión
connection = pymysql.connect(
host=db_host,
user=db_user,
password=db_password,
database=db_name,
connect_timeout=5,
cursorclass=pymysql.cursors.DictCursor
)
connection.close()
# Si la conexión es exitosa, crear motor SQLAlchemy
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}"
logger.info("Database connection successful")
return SQLDatabase.from_uri(db_uri), ""
except Exception as e:
error_msg = f"Error connecting to database: {str(e)}"
logger.error(error_msg)
return None, error_msg
def initialize_llm():
"""Inicializa el modelo de lenguaje."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Make sure all required packages are installed."
logger.error(error_msg)
return None, error_msg
google_api_key = os.getenv("GOOGLE_API_KEY")
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}")
if not google_api_key:
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets."
logger.error(error_msg)
return None, error_msg
try:
logger.info("Initializing Google Generative AI...")
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
google_api_key=google_api_key
)
# Test the model with a simple prompt
test_prompt = "Hello, this is a test."
logger.info(f"Testing model with prompt: {test_prompt}")
test_response = llm.invoke(test_prompt)
logger.info(f"Model test response: {str(test_response)[:100]}...") # Log first 100 chars
logger.info("Google Generative AI initialized successfully")
return llm, ""
except Exception as e:
error_msg = f"Error initializing Google Generative AI: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
def create_agent():
"""Crea el agente SQL si es posible."""
if not DEPENDENCIES_AVAILABLE:
error_msg = "Dependencies not available. Please check if all required packages are installed."
logger.error(error_msg)
return None, error_msg
logger.info("Starting agent creation process...")
# Step 1: Set up database connection
logger.info("Setting up database connection...")
db, db_error = setup_database_connection()
if not db:
error_msg = f"Failed to connect to database: {db_error}"
logger.error(error_msg)
else:
logger.info("Database connection successful")
# Step 2: Initialize LLM
logger.info("Initializing language model...")
llm, llm_error = initialize_llm()
if not llm:
error_msg = f"Failed to initialize language model: {llm_error}"
logger.error(error_msg)
else:
logger.info("Language model initialized successfully")
# Check if both components are available
if not db or not llm:
error_msg = f"Cannot create agent. {db_error if not db else ''} {llm_error if not llm else ''}"
logger.error(error_msg)
return None, error_msg
# Step 3: Create SQL agent
try:
logger.info("Creating SQL agent...")
agent = create_sql_agent(
llm=llm,
db=db,
agent_type=AgentType.OPENAI_FUNCTIONS,
verbose=True
)
# Test the agent with a simple query
try:
logger.info("Testing agent with a simple query...")
test_result = agent.invoke({"input": "What tables are available?"})
logger.info(f"Agent test response: {str(test_result)[:200]}...") # Log first 200 chars
except Exception as test_error:
logger.warning(f"Agent test query failed (this might be expected): {str(test_error)}")
logger.info("SQL agent created and tested successfully")
return agent, ""
except Exception as e:
error_msg = f"Error creating SQL agent: {str(e)}"
logger.error(error_msg, exc_info=True) # Include full stack trace
return None, error_msg
# Inicializar el agente
logger.info("="*50)
logger.info("Starting application initialization...")
logger.info(f"Python version: {sys.version}")
logger.info(f"Current working directory: {os.getcwd()}")
logger.info(f"Files in working directory: {os.listdir('.')}")
# Check environment variables
logger.info("Checking environment variables...")
required_vars = ["DB_USER", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"]
for var in required_vars:
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}")
# Initialize agent
logger.info("Initializing agent...")
agent, agent_error = create_agent()
db_connected = agent is not None
if agent:
logger.info("Agent initialized successfully")
else:
logger.error(f"Failed to initialize agent: {agent_error}")
logger.info("="*50)
def extract_sql_query(text):
"""Extrae consultas SQL del texto usando expresiones regulares."""
if not text:
return None
# Buscar código SQL entre backticks
sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL)
if sql_match:
return sql_match.group(1).strip()
# Si no hay backticks, buscar una consulta SQL simple
sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL)
if sql_match:
return sql_match.group(0).strip()
return None
def execute_sql_query(query, db_connection):
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena."""
if not db_connection:
return "Error: No hay conexión a la base de datos"
try:
with db_connection._engine.connect() as connection:
result = connection.execute(query)
rows = result.fetchall()
# Convertir los resultados a un formato legible
if not rows:
return "La consulta no devolvió resultados"
# Si es un solo resultado, devolverlo directamente
if len(rows) == 1 and len(rows[0]) == 1:
return str(rows[0][0])
# Si hay múltiples filas, formatear como tabla
try:
import pandas as pd
df = pd.DataFrame(rows)
return df.to_markdown(index=False)
except ImportError:
# Si pandas no está disponible, usar formato simple
return "\n".join([str(row) for row in rows])
except Exception as e:
return f"Error ejecutando la consulta: {str(e)}"
def generate_plot(data, x_col, y_col, title, x_label, y_label):
"""Generate a plot from data and return the file path."""
plt.figure(figsize=(10, 6))
plt.bar(data[x_col], data[y_col])
plt.title(title)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.xticks(rotation=45)
plt.tight_layout()
# Save to a temporary file
temp_dir = tempfile.mkdtemp()
plot_path = os.path.join(temp_dir, "plot.png")
plt.savefig(plot_path)
plt.close()
return plot_path
def convert_to_messages_format(chat_history):
"""Convert chat history to the format expected by Gradio 5.x"""
messages = []
for msg in chat_history:
if isinstance(msg, (list, tuple)) and len(msg) == 2:
if msg[0]: # User message
messages.append({"role": "user", "content": msg[0]})
if msg[1]: # Assistant message
messages.append({"role": "assistant", "content": msg[1]})
return messages
async def stream_agent_response(question: str, chat_history: List) -> Tuple[List, Dict]:
"""Procesa la pregunta del usuario y devuelve la respuesta del agente."""
# Convert to messages format for Gradio 5.x
messages = convert_to_messages_format(chat_history)
if not agent:
error_msg = (
"## ⚠️ Error: Agente no inicializado\n\n"
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n"
"1. Todas las variables de entorno estén configuradas correctamente\n"
"2. La base de datos esté accesible\n"
f"3. El modelo de lenguaje esté disponible\n\n"
f"Error: {agent_error}"
)
messages.append({"role": "user", "content": question})
messages.append({"role": "assistant", "content": error_msg})
yield messages, gr.update(visible=False)
return
try:
# Add user's question to the chat history
messages.append({"role": "user", "content": question})
yield messages, gr.update(visible=False)
# Execute the agent
response = await agent.ainvoke({"input": question, "chat_history": chat_history})
# Process the response
if hasattr(response, 'output'):
response_text = response.output
# Check if the response contains an SQL query
sql_query = extract_sql_query(response_text)
if sql_query:
# Execute the query and update the response
db_connection, _ = setup_database_connection()
if db_connection:
query_result = execute_sql_query(sql_query, db_connection)
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}"
else:
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta."
else:
response_text = "Error: No se recibió respuesta del agente."
# Add assistant's response to the chat history
messages.append({"role": "assistant", "content": response_text})
yield messages, gr.update(visible=False)
except Exception as e:
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```"
messages.append({"role": "assistant", "content": error_msg})
yield messages, gr.update(visible=False)
yield chat_history, gr.update(visible=False)
# Custom CSS for the app
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}
#chatbot {
min-height: 500px;
border: 1px solid #e0e0e0;
border-radius: 8px;
margin-bottom: 20px;
padding: 20px;
background-color: #f9f9f9;
}
.user-message, .bot-message {
padding: 12px 16px;
border-radius: 18px;
margin: 8px 0;
max-width: 80%;
line-height: 1.5;
}
.user-message {
background-color: #007bff;
color: white;
margin-left: auto;
border-bottom-right-radius: 4px;
}
.bot-message {
background-color: #f1f1f1;
color: #333;
margin-right: auto;
border-bottom-left-radius: 4px;
}
#question-input textarea {
min-height: 50px !important;
border-radius: 8px !important;
padding: 12px !important;
font-size: 16px !important;
}
#send-button {
height: 100%;
background-color: #007bff !important;
color: white !important;
border: none !important;
border-radius: 8px !important;
font-weight: 500 !important;
transition: background-color 0.2s !important;
}
#send-button:hover {
background-color: #0056b3 !important;
}
.status-message {
text-align: center;
color: #666;
font-style: italic;
margin: 10px 0;
}
"""
def create_ui():
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio."""
# Verificar el estado del entorno
env_ok, env_message = check_environment()
# Crear el tema personalizado
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="indigo",
neutral_hue="slate"
)
with gr.Blocks(
css=custom_css,
title="Asistente de Base de Datos SQL",
theme=theme
) as demo:
# Encabezado
gr.Markdown("""
# 🤖 Asistente de Base de Datos SQL
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL.
""")
# Mensaje de estado
if not env_ok:
gr.Warning("⚠️ " + env_message)
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok):
if not DEPENDENCIES_AVAILABLE:
gr.Markdown("""
## ❌ Dependencias faltantes
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias:
```bash
pip install -r requirements.txt
```
""")
else:
if not agent:
gr.Markdown(f"""
## ⚠️ Configuración incompleta
No se pudo inicializar el agente de base de datos. Por favor, verifica que:
1. Todas las variables de entorno estén configuradas correctamente
2. La base de datos esté accesible
3. La API de Google Gemini esté configurada
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'}
### Configuración local
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables:
```
DB_USER=tu_usuario
DB_PASSWORD=tu_contraseña
DB_HOST=tu_servidor
DB_NAME=tu_base_de_datos
GOOGLE_API_KEY=tu_api_key_de_google
```
""")
else:
if os.getenv('SPACE_ID'):
# Modo demo en Hugging Face Spaces
gr.Markdown("""
## 🚀 Modo Demo
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos:
1. Clona este espacio en tu cuenta de Hugging Face
2. Configura las variables de entorno en la configuración del espacio:
- `DB_USER`: Tu usuario de base de datos
- `DB_PASSWORD`: Tu contraseña de base de datos
- `DB_HOST`: La dirección del servidor de base de datos
- `DB_NAME`: El nombre de la base de datos
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini
**Nota:** Actualmente estás en modo de solo demostración.
""")
else:
gr.Markdown("""
## ✅ Sistema listo
El asistente está listo para responder tus preguntas sobre la base de datos.
""")
# Interfaz de chat - usando el nuevo formato de mensajes
chatbot = gr.Chatbot(
label="Chat",
height=500,
type="messages" # Usando el nuevo formato de mensajes
)
# Área de entrada
with gr.Row():
question_input = gr.Textbox(
label="",
placeholder="Escribe tu pregunta sobre la base de datos...",
elem_id="question-input",
container=False,
scale=5,
min_width=300,
max_lines=3,
autofocus=True
)
submit_button = gr.Button(
"Enviar",
elem_id="send-button",
min_width=100,
scale=1,
variant="primary"
)
# Información del sistema (solo para depuración)
with gr.Accordion("🔍 Información de depuración", open=False):
gr.Markdown("""
### Estado del sistema
- **Base de datos**: {}
- **Modelo**: {}
- **Modo**: {}
""".format(
f"Conectado a {os.getenv('DB_HOST')}/{os.getenv('DB_NAME')}" if db_connected else "No conectado",
"gemini-2.0-flash" if agent else "No disponible",
"Completo" if agent else "Demo (sin conexión a base de datos)"
))
# Mostrar variables de entorno (solo para depuración)
if os.getenv("SHOW_ENV_DEBUG", "false").lower() == "true":
env_vars = {k: "***" if "PASS" in k or "KEY" in k else v
for k, v in os.environ.items()
if k.startswith(('DB_', 'GOOGLE_'))}
gr.Code(
json.dumps(env_vars, indent=2, ensure_ascii=False),
language="json",
label="Variables de entorno"
)
# Hidden component for streaming output
streaming_output_display = gr.Textbox(visible=False)
return demo, chatbot, question_input, submit_button, streaming_output_display
def create_application():
"""Create and configure the Gradio application."""
# Create the UI components
demo, chatbot, question_input, submit_button, streaming_output_display = create_ui()
def user_message(user_input: str, chat_history: List[Dict]) -> Tuple[str, List[Dict]]:
"""Add user message to chat history and clear input."""
if not user_input.strip():
return "", chat_history
logger.info(f"User message: {user_input}")
# Convert to messages format if needed
if chat_history and isinstance(chat_history[0], list):
chat_history = convert_to_messages_format(chat_history)
# Add user message to chat history
updated_history = chat_history + [{"role": "user", "content": user_input}]
return "", updated_history
async def bot_response(chat_history: List[Dict]) -> Tuple[List[Dict], Dict]:
"""Get bot response and update chat history."""
if not chat_history or not chat_history[-1].get("role") == "user":
return chat_history, gr.update(visible=False)
# Get the last user message
question = chat_history[-1]["content"]
logger.info(f"Processing question: {question}")
# Convert to old format for backward compatibility with stream_agent_response
old_format = []
for msg in chat_history:
if msg["role"] == "user":
old_format.append([msg["content"], None])
elif msg["role"] == "assistant" and old_format and len(old_format[-1]) == 2 and old_format[-1][1] is None:
old_format[-1][1] = msg["content"]
# Call the agent and get the response
# We need to consume the async generator and return the last value
last_response = None
async for response in stream_agent_response(question, old_format[:-1]):
last_response = response
return last_response
# Event handlers
with demo:
submit_click = submit_button.click(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, streaming_output_display],
api_name="ask"
)
question_input.submit(
fn=user_message,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot],
queue=True
).then(
fn=bot_response,
inputs=[chatbot],
outputs=[chatbot, streaming_output_display]
)
return demo
# Create the application
demo = create_application()
# Configuración para Hugging Face Spaces
def get_app():
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces."""
# Verificar si estamos en un entorno de Hugging Face Spaces
if os.getenv('SPACE_ID'):
# Configuración específica para Spaces
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)"
demo.description = """
Este es un demo del asistente de base de datos SQL.
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno.
"""
return demo
# Para desarrollo local
if __name__ == "__main__":
# Configuración para desarrollo local - versión simplificada para Gradio 5.x
demo.launch(
server_name="0.0.0.0",
server_port=7860,
debug=True,
share=False
)
|