|
import os |
|
import sys |
|
import gradio as gr |
|
import json |
|
from typing import List, Dict, Any, Optional, Tuple |
|
import logging |
|
|
|
try: |
|
|
|
from langchain_community.agent_toolkits import create_sql_agent |
|
from langchain_community.utilities import SQLDatabase |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain.agents.agent_types import AgentType |
|
import pymysql |
|
from dotenv import load_dotenv |
|
|
|
DEPENDENCIES_AVAILABLE = True |
|
except ImportError: |
|
|
|
DEPENDENCIES_AVAILABLE = False |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
def check_environment(): |
|
"""Verifica si el entorno está configurado correctamente.""" |
|
if not DEPENDENCIES_AVAILABLE: |
|
return False, "Missing required Python packages. Please install them with: pip install -r requirements.txt" |
|
|
|
|
|
required_vars = ["DB_USER", "DB_PASSWORD", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"] |
|
missing_vars = [var for var in required_vars if not os.getenv(var)] |
|
|
|
if missing_vars: |
|
return False, f"Missing required environment variables: {', '.join(missing_vars)}" |
|
|
|
return True, "Environment is properly configured" |
|
|
|
def setup_database_connection(): |
|
"""Intenta establecer una conexión a la base de datos.""" |
|
if not DEPENDENCIES_AVAILABLE: |
|
return None, "Dependencies not available" |
|
|
|
try: |
|
load_dotenv(override=True) |
|
|
|
|
|
logger.info("Environment variables:") |
|
for key, value in os.environ.items(): |
|
if any(s in key.lower() for s in ['pass', 'key', 'secret']): |
|
logger.info(f" {key}: {'*' * 8} (hidden for security)") |
|
else: |
|
logger.info(f" {key}: {value}") |
|
|
|
db_user = os.getenv("DB_USER") |
|
db_password = os.getenv("DB_PASSWORD") |
|
db_host = os.getenv("DB_HOST") |
|
db_name = os.getenv("DB_NAME") |
|
|
|
|
|
logger.info(f"Database connection attempt - Host: {db_host}, User: {db_user}, DB: {db_name}") |
|
if not all([db_user, db_password, db_host, db_name]): |
|
missing = [var for var, val in [ |
|
("DB_USER", db_user), |
|
("DB_PASSWORD", "*" if db_password else ""), |
|
("DB_HOST", db_host), |
|
("DB_NAME", db_name) |
|
] if not val] |
|
logger.error(f"Missing required database configuration: {', '.join(missing)}") |
|
return None, f"Missing database configuration: {', '.join(missing)}" |
|
|
|
if not all([db_user, db_password, db_host, db_name]): |
|
return None, "Missing database configuration" |
|
|
|
logger.info(f"Connecting to database: {db_user}@{db_host}/{db_name}") |
|
|
|
|
|
connection = pymysql.connect( |
|
host=db_host, |
|
user=db_user, |
|
password=db_password, |
|
database=db_name, |
|
connect_timeout=5, |
|
cursorclass=pymysql.cursors.DictCursor |
|
) |
|
connection.close() |
|
|
|
|
|
db_uri = f"mysql+pymysql://{db_user}:{db_password}@{db_host}/{db_name}" |
|
logger.info("Database connection successful") |
|
return SQLDatabase.from_uri(db_uri), "" |
|
|
|
except Exception as e: |
|
error_msg = f"Error connecting to database: {str(e)}" |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
def initialize_llm(): |
|
"""Inicializa el modelo de lenguaje.""" |
|
if not DEPENDENCIES_AVAILABLE: |
|
error_msg = "Dependencies not available. Make sure all required packages are installed." |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
google_api_key = os.getenv("GOOGLE_API_KEY") |
|
logger.info(f"GOOGLE_API_KEY found: {'Yes' if google_api_key else 'No'}") |
|
|
|
if not google_api_key: |
|
error_msg = "GOOGLE_API_KEY not found in environment variables. Please check your Hugging Face Space secrets." |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
try: |
|
logger.info("Initializing Google Generative AI...") |
|
llm = ChatGoogleGenerativeAI( |
|
model="gemini-2.0-flash", |
|
temperature=0, |
|
google_api_key=google_api_key |
|
) |
|
|
|
|
|
test_prompt = "Hello, this is a test." |
|
logger.info(f"Testing model with prompt: {test_prompt}") |
|
test_response = llm.invoke(test_prompt) |
|
logger.info(f"Model test response: {str(test_response)[:100]}...") |
|
|
|
logger.info("Google Generative AI initialized successfully") |
|
return llm, "" |
|
|
|
except Exception as e: |
|
error_msg = f"Error initializing Google Generative AI: {str(e)}" |
|
logger.error(error_msg, exc_info=True) |
|
return None, error_msg |
|
|
|
def create_agent(): |
|
"""Crea el agente SQL si es posible.""" |
|
if not DEPENDENCIES_AVAILABLE: |
|
error_msg = "Dependencies not available. Please check if all required packages are installed." |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
logger.info("Starting agent creation process...") |
|
|
|
|
|
logger.info("Setting up database connection...") |
|
db, db_error = setup_database_connection() |
|
if not db: |
|
error_msg = f"Failed to connect to database: {db_error}" |
|
logger.error(error_msg) |
|
else: |
|
logger.info("Database connection successful") |
|
|
|
|
|
logger.info("Initializing language model...") |
|
llm, llm_error = initialize_llm() |
|
if not llm: |
|
error_msg = f"Failed to initialize language model: {llm_error}" |
|
logger.error(error_msg) |
|
else: |
|
logger.info("Language model initialized successfully") |
|
|
|
|
|
if not db or not llm: |
|
error_msg = f"Cannot create agent. {db_error if not db else ''} {llm_error if not llm else ''}" |
|
logger.error(error_msg) |
|
return None, error_msg |
|
|
|
|
|
try: |
|
logger.info("Creating SQL agent...") |
|
agent = create_sql_agent( |
|
llm=llm, |
|
db=db, |
|
agent_type=AgentType.OPENAI_FUNCTIONS, |
|
verbose=True |
|
) |
|
|
|
|
|
try: |
|
logger.info("Testing agent with a simple query...") |
|
test_result = agent.invoke({"input": "What tables are available?"}) |
|
logger.info(f"Agent test response: {str(test_result)[:200]}...") |
|
except Exception as test_error: |
|
logger.warning(f"Agent test query failed (this might be expected): {str(test_error)}") |
|
|
|
logger.info("SQL agent created and tested successfully") |
|
return agent, "" |
|
|
|
except Exception as e: |
|
error_msg = f"Error creating SQL agent: {str(e)}" |
|
logger.error(error_msg, exc_info=True) |
|
return None, error_msg |
|
|
|
|
|
logger.info("="*50) |
|
logger.info("Starting application initialization...") |
|
logger.info(f"Python version: {sys.version}") |
|
logger.info(f"Current working directory: {os.getcwd()}") |
|
logger.info(f"Files in working directory: {os.listdir('.')}") |
|
|
|
|
|
logger.info("Checking environment variables...") |
|
required_vars = ["DB_USER", "DB_HOST", "DB_NAME", "GOOGLE_API_KEY"] |
|
for var in required_vars: |
|
logger.info(f"{var}: {'*' * 8 if os.getenv(var) else 'NOT SET'}") |
|
|
|
|
|
logger.info("Initializing agent...") |
|
agent, agent_error = create_agent() |
|
db_connected = agent is not None |
|
|
|
if agent: |
|
logger.info("Agent initialized successfully") |
|
else: |
|
logger.error(f"Failed to initialize agent: {agent_error}") |
|
|
|
logger.info("="*50) |
|
|
|
def extract_sql_query(text): |
|
"""Extrae consultas SQL del texto usando expresiones regulares.""" |
|
if not text: |
|
return None |
|
|
|
|
|
sql_match = re.search(r'```(?:sql)?\s*(.*?)```', text, re.DOTALL) |
|
if sql_match: |
|
return sql_match.group(1).strip() |
|
|
|
|
|
sql_match = re.search(r'(SELECT|INSERT|UPDATE|DELETE|CREATE|ALTER|DROP|TRUNCATE).*?;', text, re.IGNORECASE | re.DOTALL) |
|
if sql_match: |
|
return sql_match.group(0).strip() |
|
|
|
return None |
|
|
|
def execute_sql_query(query, db_connection): |
|
"""Ejecuta una consulta SQL y devuelve los resultados como una cadena.""" |
|
if not db_connection: |
|
return "Error: No hay conexión a la base de datos" |
|
|
|
try: |
|
with db_connection._engine.connect() as connection: |
|
result = connection.execute(query) |
|
rows = result.fetchall() |
|
|
|
|
|
if not rows: |
|
return "La consulta no devolvió resultados" |
|
|
|
|
|
if len(rows) == 1 and len(rows[0]) == 1: |
|
return str(rows[0][0]) |
|
|
|
|
|
try: |
|
import pandas as pd |
|
df = pd.DataFrame(rows) |
|
return df.to_markdown(index=False) |
|
except ImportError: |
|
|
|
return "\n".join([str(row) for row in rows]) |
|
|
|
except Exception as e: |
|
return f"Error ejecutando la consulta: {str(e)}" |
|
|
|
def generate_plot(data, x_col, y_col, title, x_label, y_label): |
|
"""Generate a plot from data and return the file path.""" |
|
plt.figure(figsize=(10, 6)) |
|
plt.bar(data[x_col], data[y_col]) |
|
plt.title(title) |
|
plt.xlabel(x_label) |
|
plt.ylabel(y_label) |
|
plt.xticks(rotation=45) |
|
plt.tight_layout() |
|
|
|
|
|
temp_dir = tempfile.mkdtemp() |
|
plot_path = os.path.join(temp_dir, "plot.png") |
|
plt.savefig(plot_path) |
|
plt.close() |
|
|
|
return plot_path |
|
|
|
def convert_to_messages_format(chat_history): |
|
"""Convert chat history to the format expected by Gradio 5.x""" |
|
messages = [] |
|
for msg in chat_history: |
|
if isinstance(msg, (list, tuple)) and len(msg) == 2: |
|
if msg[0]: |
|
messages.append({"role": "user", "content": msg[0]}) |
|
if msg[1]: |
|
messages.append({"role": "assistant", "content": msg[1]}) |
|
return messages |
|
|
|
async def stream_agent_response(question: str, chat_history: List) -> Tuple[List, Dict]: |
|
"""Procesa la pregunta del usuario y devuelve la respuesta del agente.""" |
|
|
|
messages = convert_to_messages_format(chat_history) |
|
|
|
if not agent: |
|
error_msg = ( |
|
"## ⚠️ Error: Agente no inicializado\n\n" |
|
"No se pudo inicializar el agente de base de datos. Por favor, verifica que:\n" |
|
"1. Todas las variables de entorno estén configuradas correctamente\n" |
|
"2. La base de datos esté accesible\n" |
|
f"3. El modelo de lenguaje esté disponible\n\n" |
|
f"Error: {agent_error}" |
|
) |
|
messages.append({"role": "user", "content": question}) |
|
messages.append({"role": "assistant", "content": error_msg}) |
|
yield messages, gr.update(visible=False) |
|
return |
|
|
|
try: |
|
|
|
messages.append({"role": "user", "content": question}) |
|
yield messages, gr.update(visible=False) |
|
|
|
|
|
response = await agent.ainvoke({"input": question, "chat_history": chat_history}) |
|
|
|
|
|
if hasattr(response, 'output'): |
|
response_text = response.output |
|
|
|
|
|
sql_query = extract_sql_query(response_text) |
|
if sql_query: |
|
|
|
db_connection, _ = setup_database_connection() |
|
if db_connection: |
|
query_result = execute_sql_query(sql_query, db_connection) |
|
response_text += f"\n\n### 🔍 Resultado de la consulta:\n```sql\n{sql_query}\n```\n\n{query_result}" |
|
else: |
|
response_text += "\n\n⚠️ No se pudo conectar a la base de datos para ejecutar la consulta." |
|
else: |
|
response_text = "Error: No se recibió respuesta del agente." |
|
|
|
|
|
messages.append({"role": "assistant", "content": response_text}) |
|
yield messages, gr.update(visible=False) |
|
|
|
except Exception as e: |
|
error_msg = f"## ❌ Error\n\nOcurrió un error al procesar tu solicitud:\n\n```\n{str(e)}\n```" |
|
messages.append({"role": "assistant", "content": error_msg}) |
|
yield messages, gr.update(visible=False) |
|
yield chat_history, gr.update(visible=False) |
|
|
|
|
|
custom_css = """ |
|
.gradio-container { |
|
max-width: 1200px !important; |
|
margin: 0 auto !important; |
|
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif; |
|
} |
|
|
|
#chatbot { |
|
min-height: 500px; |
|
border: 1px solid #e0e0e0; |
|
border-radius: 8px; |
|
margin-bottom: 20px; |
|
padding: 20px; |
|
background-color: #f9f9f9; |
|
} |
|
|
|
.user-message, .bot-message { |
|
padding: 12px 16px; |
|
border-radius: 18px; |
|
margin: 8px 0; |
|
max-width: 80%; |
|
line-height: 1.5; |
|
} |
|
|
|
.user-message { |
|
background-color: #007bff; |
|
color: white; |
|
margin-left: auto; |
|
border-bottom-right-radius: 4px; |
|
} |
|
|
|
.bot-message { |
|
background-color: #f1f1f1; |
|
color: #333; |
|
margin-right: auto; |
|
border-bottom-left-radius: 4px; |
|
} |
|
|
|
#question-input textarea { |
|
min-height: 50px !important; |
|
border-radius: 8px !important; |
|
padding: 12px !important; |
|
font-size: 16px !important; |
|
} |
|
|
|
#send-button { |
|
height: 100%; |
|
background-color: #007bff !important; |
|
color: white !important; |
|
border: none !important; |
|
border-radius: 8px !important; |
|
font-weight: 500 !important; |
|
transition: background-color 0.2s !important; |
|
} |
|
|
|
#send-button:hover { |
|
background-color: #0056b3 !important; |
|
} |
|
|
|
.status-message { |
|
text-align: center; |
|
color: #666; |
|
font-style: italic; |
|
margin: 10px 0; |
|
} |
|
""" |
|
|
|
def create_ui(): |
|
"""Crea y devuelve los componentes de la interfaz de usuario de Gradio.""" |
|
|
|
env_ok, env_message = check_environment() |
|
|
|
|
|
theme = gr.themes.Soft( |
|
primary_hue="blue", |
|
secondary_hue="indigo", |
|
neutral_hue="slate" |
|
) |
|
|
|
with gr.Blocks( |
|
css=custom_css, |
|
title="Asistente de Base de Datos SQL", |
|
theme=theme |
|
) as demo: |
|
|
|
gr.Markdown(""" |
|
# 🤖 Asistente de Base de Datos SQL |
|
|
|
Haz preguntas en lenguaje natural sobre tu base de datos y obtén resultados de consultas SQL. |
|
""") |
|
|
|
|
|
if not env_ok: |
|
gr.Warning("⚠️ " + env_message) |
|
|
|
with gr.Accordion("ℹ️ Estado del sistema", open=not env_ok): |
|
if not DEPENDENCIES_AVAILABLE: |
|
gr.Markdown(""" |
|
## ❌ Dependencias faltantes |
|
|
|
Para ejecutar esta aplicación localmente, necesitas instalar las dependencias: |
|
|
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
""") |
|
else: |
|
if not agent: |
|
gr.Markdown(f""" |
|
## ⚠️ Configuración incompleta |
|
|
|
No se pudo inicializar el agente de base de datos. Por favor, verifica que: |
|
|
|
1. Todas las variables de entorno estén configuradas correctamente |
|
2. La base de datos esté accesible |
|
3. La API de Google Gemini esté configurada |
|
|
|
**Error:** {agent_error if agent_error else 'No se pudo determinar el error'} |
|
|
|
### Configuración local |
|
|
|
Crea un archivo `.env` en la raíz del proyecto con las siguientes variables: |
|
|
|
``` |
|
DB_USER=tu_usuario |
|
DB_PASSWORD=tu_contraseña |
|
DB_HOST=tu_servidor |
|
DB_NAME=tu_base_de_datos |
|
GOOGLE_API_KEY=tu_api_key_de_google |
|
``` |
|
""") |
|
else: |
|
if os.getenv('SPACE_ID'): |
|
|
|
gr.Markdown(""" |
|
## 🚀 Modo Demo |
|
|
|
Esta es una demostración del asistente de base de datos SQL. Para usar la versión completa con conexión a base de datos: |
|
|
|
1. Clona este espacio en tu cuenta de Hugging Face |
|
2. Configura las variables de entorno en la configuración del espacio: |
|
- `DB_USER`: Tu usuario de base de datos |
|
- `DB_PASSWORD`: Tu contraseña de base de datos |
|
- `DB_HOST`: La dirección del servidor de base de datos |
|
- `DB_NAME`: El nombre de la base de datos |
|
- `GOOGLE_API_KEY`: Tu clave de API de Google Gemini |
|
|
|
**Nota:** Actualmente estás en modo de solo demostración. |
|
""") |
|
else: |
|
gr.Markdown(""" |
|
## ✅ Sistema listo |
|
|
|
El asistente está listo para responder tus preguntas sobre la base de datos. |
|
""") |
|
|
|
|
|
chatbot = gr.Chatbot( |
|
label="Chat", |
|
height=500, |
|
type="messages" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
question_input = gr.Textbox( |
|
label="", |
|
placeholder="Escribe tu pregunta sobre la base de datos...", |
|
elem_id="question-input", |
|
container=False, |
|
scale=5, |
|
min_width=300, |
|
max_lines=3, |
|
autofocus=True |
|
) |
|
submit_button = gr.Button( |
|
"Enviar", |
|
elem_id="send-button", |
|
min_width=100, |
|
scale=1, |
|
variant="primary" |
|
) |
|
|
|
|
|
with gr.Accordion("🔍 Información de depuración", open=False): |
|
gr.Markdown(""" |
|
### Estado del sistema |
|
- **Base de datos**: {} |
|
- **Modelo**: {} |
|
- **Modo**: {} |
|
""".format( |
|
f"Conectado a {os.getenv('DB_HOST')}/{os.getenv('DB_NAME')}" if db_connected else "No conectado", |
|
"gemini-2.0-flash" if agent else "No disponible", |
|
"Completo" if agent else "Demo (sin conexión a base de datos)" |
|
)) |
|
|
|
|
|
if os.getenv("SHOW_ENV_DEBUG", "false").lower() == "true": |
|
env_vars = {k: "***" if "PASS" in k or "KEY" in k else v |
|
for k, v in os.environ.items() |
|
if k.startswith(('DB_', 'GOOGLE_'))} |
|
gr.Code( |
|
json.dumps(env_vars, indent=2, ensure_ascii=False), |
|
language="json", |
|
label="Variables de entorno" |
|
) |
|
|
|
|
|
streaming_output_display = gr.Textbox(visible=False) |
|
|
|
return demo, chatbot, question_input, submit_button, streaming_output_display |
|
|
|
def create_application(): |
|
"""Create and configure the Gradio application.""" |
|
|
|
demo, chatbot, question_input, submit_button, streaming_output_display = create_ui() |
|
|
|
def user_message(user_input: str, chat_history: List[Dict]) -> Tuple[str, List[Dict]]: |
|
"""Add user message to chat history and clear input.""" |
|
if not user_input.strip(): |
|
return "", chat_history |
|
|
|
logger.info(f"User message: {user_input}") |
|
|
|
|
|
if chat_history and isinstance(chat_history[0], list): |
|
chat_history = convert_to_messages_format(chat_history) |
|
|
|
|
|
updated_history = chat_history + [{"role": "user", "content": user_input}] |
|
return "", updated_history |
|
|
|
async def bot_response(chat_history: List[Dict]) -> Tuple[List[Dict], Dict]: |
|
"""Get bot response and update chat history.""" |
|
if not chat_history or not chat_history[-1].get("role") == "user": |
|
return chat_history, gr.update(visible=False) |
|
|
|
|
|
question = chat_history[-1]["content"] |
|
logger.info(f"Processing question: {question}") |
|
|
|
|
|
old_format = [] |
|
for msg in chat_history: |
|
if msg["role"] == "user": |
|
old_format.append([msg["content"], None]) |
|
elif msg["role"] == "assistant" and old_format and len(old_format[-1]) == 2 and old_format[-1][1] is None: |
|
old_format[-1][1] = msg["content"] |
|
|
|
|
|
|
|
last_response = None |
|
async for response in stream_agent_response(question, old_format[:-1]): |
|
last_response = response |
|
return last_response |
|
|
|
|
|
with demo: |
|
submit_click = submit_button.click( |
|
fn=user_message, |
|
inputs=[question_input, chatbot], |
|
outputs=[question_input, chatbot], |
|
queue=True |
|
).then( |
|
fn=bot_response, |
|
inputs=[chatbot], |
|
outputs=[chatbot, streaming_output_display], |
|
api_name="ask" |
|
) |
|
|
|
question_input.submit( |
|
fn=user_message, |
|
inputs=[question_input, chatbot], |
|
outputs=[question_input, chatbot], |
|
queue=True |
|
).then( |
|
fn=bot_response, |
|
inputs=[chatbot], |
|
outputs=[chatbot, streaming_output_display] |
|
) |
|
|
|
return demo |
|
|
|
|
|
demo = create_application() |
|
|
|
|
|
def get_app(): |
|
"""Obtiene la instancia de la aplicación Gradio para Hugging Face Spaces.""" |
|
|
|
if os.getenv('SPACE_ID'): |
|
|
|
demo.title = "🤖 Asistente de Base de Datos SQL (Demo)" |
|
demo.description = """ |
|
Este es un demo del asistente de base de datos SQL. |
|
Para usar la versión completa con conexión a base de datos, clona este espacio y configura las variables de entorno. |
|
""" |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
debug=True, |
|
share=False |
|
) |
|
|