File size: 5,725 Bytes
a4ff801
006654f
1c3741b
dc1be42
1c3741b
85c9131
 
 
 
d532f55
0f8fc3c
 
1c3741b
 
 
dc1be42
 
3b7e628
1c3741b
 
85c9131
d532f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a127264
 
d532f55
a127264
d532f55
 
a127264
d532f55
a127264
 
d532f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3741b
85c9131
 
 
dc1be42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c9131
dc1be42
006654f
 
dc1be42
25a02b8
1c3741b
006654f
d532f55
 
a4ff801
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import streamlit as st
import pandas as pd
import transformers
from transformers import  pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification

st.header("Knowledge extraction on Endocrine disruptors")
st.text("This tool lets you extract relation triples concerning interactions between: endocrine disrupting chemicals, hormones, receptors and cancers.")
st.text("It is the result of an end of studies project within ESI school and dedicated to biomedical researchers looking to extract precise information about the subject without digging into long publications.")
x = st.text_area('Entre you text on EDCs:')

if x[-1] not in ".?:":
  x += "."
#model.to("cpu")
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )


model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", )
token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint,  )

st.text("Knowledge extraction is in progress ...")

biotext = x

#split document or text into sentences

lstbiotext = []

flag = 0
tempsen = ""
for e in biotext:
  tempsen += e
  if e=="(":
      flag = 1
  if e==")":
      flag = 0
  if (e =="." or e =="?" or e ==":" ) and flag == 0 :
      lstbiotext += [tempsen.strip()]
      tempsen = ""

ddata = lstbiotext

#tokenized_dat = tokenize_function(ddata) 

az = token_classifier(ddata)


#code to convert NER output to  RE input compatible format

#tg_inorder are decoding of labels on which the model was fine tuned on 

tg_inorder = ['O',
 'B-HORMONE',
 'B-EXP_PER',
 'I-HORMONE',
 'I-CANCER',
 'I-EDC',
 'B-RECEPTOR',
 'B-CANCER',
 'I-RECEPTOR',
 'B-EDC',
 'PAD']

lstSentEnc = []
lstSentbilbl = []
lstSentEnt = []
for itsent in az:
  
  sentaz = itsent
  ph = []
  phl = []
  for e in sentaz:
    if e["word"][0]=="#" and len(ph)!=0:
      ph[-1]+= e["word"][2:]
    else:
      ph += [e["word"]]
      phl += [e["entity"]]


  phltr = []
  for e in phl:
    phltr += [tg_inorder[int(e[-1])] if len(e)==7 else  tg_inorder[int(e[-2:])]]
  

  nwph = []
  nwphltr = []
  flag = 0
  for i in range(len(phltr)-2):
    if phltr[i]=="O" and flag != 3 :
      nwph += [ph[i]]
      nwphltr += [phltr[i]]
      continue
    elif flag == 3:
      nwph[-1] += " "+ph[i]
      flag = 1
      continue
    elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 0:
      nwph += [ph[i]]
      nwphltr += [phltr[i]]
      flag = 1
      continue
    elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 1:
      nwph[-1] += " "+ph[i]
      continue
# xox with flag == 3
    elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 0:
      nwph += [ph[i]]
      nwphltr += [phltr[i]]
      flag = 3
      continue
    elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 1:
      nwph[-1] += " "+ph[i]
      flag = 3
      continue
#\ xox
    elif flag == 1:
      nwph[-1] += " "+ph[i]
      flag = 0
      continue
    else :
      nwph += [ph[i]]
      nwphltr += [phltr[i]]
      continue
      

  # nwph,nwphltr,len(nwph),len(nwphltr)
  

  if nwphltr.count("O") <= len(nwphltr)-2:
    for i in range(len(nwph)-1):
      if nwphltr[i] != "O":
        for j in range(i,len(nwph)):
          if nwphltr[j] != "O" and nwphltr[j] != nwphltr[i] and {nwphltr[j], nwphltr[i]} != {"B-CANCER","B-RECEPTOR"}:
            sen2ad = ""
            for g in range(i):
              sen2ad += nwph[g]+" "
            sen2ad += "<e1>"+nwph[i]+"</e1> "

            for t in range(i+1,j):
              sen2ad += nwph[t]+" "
            sen2ad += "<e2>"+nwph[j]+"</e2>"
            if j<len(nwph):
              for l in range(j+1,len(nwph)):
                sen2ad += " "+nwph[l]
            lstSentEnc += [sen2ad]
            lstSentbilbl += [[nwphltr[i],nwphltr[j]]]
            lstSentEnt += [[nwph[i],nwph[j]]]
      


#lstSentEnc,lstSentEnt,lstSentbilbl

st.text("Entities detected, Next: Relation detection ...")


# Relation extraction part

token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re, 
)

rrdata = lstSentEnc



outre = token_classifier(rrdata)


trLABELS = ['INCREASE_RISK(e1,e2)',
 'SPEED_UP(e2,e1)',
 'DECREASE_ACTIVITY(e1,e2)',
 'NO_ASSOCIATION(e1,e2)',
 'DECREASE(e1,e2)',
 'BLOCK(e1,e2)',
 'CAUSE(e1,e2)',
 'ACTIVATE(e2,e1)',
 'DEVELOP(e2,e1)',
 'ALTER(e1,e2)',
 'INCREASE_RISK(e2,e1)',
 'SPEED_UP(e1,e2)',
 'INTERFER(e1,e2)',
 'DECREASE(e2,e1)',
 'NO_ASSOCIATION(e2,e1)',
 'INCREASE(e2,e1)',
 'INTERFER(e2,e1)',
 'ACTIVATE(e1,e2)',
 'INCREASE(e1,e2)',
 'MIMIC(e1,e2)',
 'MIMIC(e2,e1)',
 'BLOCK(e2,e1)',
 'other',
 'BIND(e2,e1)',
 'INCREASE_ACTIVITY(e2,e1)',
 'ALTER(e2,e1)',
 'CAUSE(e2,e1)',
 'BIND(e1,e2)',
 'DEVELOP(e1,e2)',
 'DECREASE_ACTIVITY(e2,e1)']



outrelbl = []
for e in outre:
  outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]

for i in range(len(outrelbl)):
  if "(e2,e1)" in outrelbl[i]:
    lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
    lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]


edccan = []


for i in range(len(outrelbl)):
  if outrelbl[i] != "other":
    edccan += [[lstSentEnc[i],lstSentEnt[i][0], lstSentEnt[i][1],lstSentbilbl[i][0]+" "+outrelbl[i][:-7]+" "+lstSentbilbl[i][1]]]
 
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )

if x:
  out = token_classifier(x)
  st.table(edccandf)