File size: 5,191 Bytes
a4ff801 006654f 1c3741b dc1be42 1c3741b d532f55 1c3741b dc1be42 1c3741b d532f55 a127264 d532f55 a127264 d532f55 a127264 d532f55 a127264 d532f55 1c3741b dc1be42 006654f dc1be42 25a02b8 1c3741b 006654f d532f55 a4ff801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import streamlit as st
import pandas as pd
import transformers
from transformers import pipeline, TokenClassificationPipeline, BertForTokenClassification , AutoTokenizer , TextClassificationPipeline , AutoModelForSequenceClassification
x = st.text_area('enter')
#model.to("cpu")
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-large-cased-v1.1", truncation = True, padding=True, model_max_length=512,)
model_checkpoint = BertForTokenClassification.from_pretrained("dexay/Ner2HgF", )
model_re = AutoModelForSequenceClassification.from_pretrained("dexay/reDs3others", truncation = True, padding=True, model_max_length=512,)
token_classifier = pipeline("token-classification", tokenizer = tokenizer,model=model_checkpoint, )
biotext = x
#split document or text into sentences
lstbiotext = []
flag = 0
tempsen = ""
for e in biotext:
tempsen += e
if e=="(":
flag = 1
if e==")":
flag = 0
if (e =="." or e =="?" or e ==":" ) and flag == 0 :
lstbiotext += [tempsen.strip()]
tempsen = ""
ddata = lstbiotext
#tokenized_dat = tokenize_function(ddata)
az = token_classifier(ddata)
#code to convert NER output to RE input compatible format
#tg_inorder are decoding of labels on which the model was fine tuned on
tg_inorder = ['O',
'B-HORMONE',
'B-EXP_PER',
'I-HORMONE',
'I-CANCER',
'I-EDC',
'B-RECEPTOR',
'B-CANCER',
'I-RECEPTOR',
'B-EDC',
'PAD']
lstSentEnc = []
lstSentbilbl = []
lstSentEnt = []
for itsent in az:
sentaz = itsent
ph = []
phl = []
for e in sentaz:
if e["word"][0]=="#" and len(ph)!=0:
ph[-1]+= e["word"][2:]
else:
ph += [e["word"]]
phl += [e["entity"]]
phltr = []
for e in phl:
phltr += [tg_inorder[int(e[-1])] if len(e)==7 else tg_inorder[int(e[-2:])]]
nwph = []
nwphltr = []
flag = 0
for i in range(len(phltr)-2):
if phltr[i]=="O" and flag != 3 :
nwph += [ph[i]]
nwphltr += [phltr[i]]
continue
elif flag == 3:
nwph[-1] += " "+ph[i]
flag = 1
continue
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 0:
nwph += [ph[i]]
nwphltr += [phltr[i]]
flag = 1
continue
elif phltr[i][2:]==phltr[i+1][2:] and phltr[i+1][0]=="I" and flag == 1:
nwph[-1] += " "+ph[i]
continue
# xox with flag == 3
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 0:
nwph += [ph[i]]
nwphltr += [phltr[i]]
flag = 3
continue
elif phltr[i][2:]==phltr[i+2][2:] and phltr[i+1]=="O" and phltr[i+2][0]=="I" and flag == 1:
nwph[-1] += " "+ph[i]
flag = 3
continue
#\ xox
elif flag == 1:
nwph[-1] += " "+ph[i]
flag = 0
continue
else :
nwph += [ph[i]]
nwphltr += [phltr[i]]
continue
# nwph,nwphltr,len(nwph),len(nwphltr)
if nwphltr.count("O") <= len(nwphltr)-2:
for i in range(len(nwph)-1):
if nwphltr[i] != "O":
for j in range(i,len(nwph)):
if nwphltr[j] != "O" and nwphltr[j] != nwphltr[i] and {nwphltr[j], nwphltr[i]} != {"B-CANCER","B-RECEPTOR"}:
sen2ad = ""
for g in range(i):
sen2ad += nwph[g]+" "
sen2ad += "<e1>"+nwph[i]+"</e1> "
for t in range(i+1,j):
sen2ad += nwph[t]+" "
sen2ad += "<e2>"+nwph[j]+"</e2>"
if j<len(nwph):
for l in range(j+1,len(nwph)):
sen2ad += " "+nwph[l]
lstSentEnc += [sen2ad]
lstSentbilbl += [[nwphltr[i],nwphltr[j]]]
lstSentEnt += [[nwph[i],nwph[j]]]
#lstSentEnc,lstSentEnt,lstSentbilbl
# Relation extraction part
token_classifier = pipeline("text-classification", tokenizer = tokenizer,model=model_re,
)
rrdata = lstSentEnc
outre = token_classifier(rrdata)
trLABELS = ['INCREASE_RISK(e1,e2)',
'SPEED_UP(e2,e1)',
'DECREASE_ACTIVITY(e1,e2)',
'NO_ASSOCIATION(e1,e2)',
'DECREASE(e1,e2)',
'BLOCK(e1,e2)',
'CAUSE(e1,e2)',
'ACTIVATE(e2,e1)',
'DEVELOP(e2,e1)',
'ALTER(e1,e2)',
'INCREASE_RISK(e2,e1)',
'SPEED_UP(e1,e2)',
'INTERFER(e1,e2)',
'DECREASE(e2,e1)',
'NO_ASSOCIATION(e2,e1)',
'INCREASE(e2,e1)',
'INTERFER(e2,e1)',
'ACTIVATE(e1,e2)',
'INCREASE(e1,e2)',
'MIMIC(e1,e2)',
'MIMIC(e2,e1)',
'BLOCK(e2,e1)',
'other',
'BIND(e2,e1)',
'INCREASE_ACTIVITY(e2,e1)',
'ALTER(e2,e1)',
'CAUSE(e2,e1)',
'BIND(e1,e2)',
'DEVELOP(e1,e2)',
'DECREASE_ACTIVITY(e2,e1)']
outrelbl = []
for e in outre:
outrelbl += [trLABELS[int(e['label'][-1])] if len(e["label"])==7 else trLABELS[int(e['label'][-2:])] ]
for i in range(len(outrelbl)):
if "(e2,e1)" in outrelbl[i]:
lstSentbilbl[i][0],lstSentbilbl[i][1] = lstSentbilbl[i][1],lstSentbilbl[i][0]
lstSentEnt[i][0],lstSentEnt[i][1] = lstSentEnt[i][1],lstSentEnt[i][0]
edccan = []
for i in range(len(outrelbl)):
if outrelbl[i]== "other":
edccan += [[lstSentEnc[i],lstSentEnt[i][0], lstSentEnt[i][1],lstSentbilbl[i][0]+" "+outrelbl[i][:-7]+" "+lstSentbilbl[i][1]]]
edccandf = pd.DataFrame(edccan, columns= ["Sentence", "Entity 1", "Entity 2", "Relation"] )
if x:
out = token_classifier(x)
st.table(edccandf)
|