File size: 5,012 Bytes
ac9f500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from flask import Flask, request, jsonify, send_file
from tensorflow.keras.models import load_model, Model
from PIL import Image
import numpy as np
import os
import cv2
import tensorflow as tf
import firebase_admin
from firebase_admin import credentials, db
from datetime import datetime

app = Flask(__name__)

# βœ… 1. Initialize Firebase
cred = credentials.Certificate("glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json")  # Path to your service account JSON
firebase_admin.initialize_app(cred, {
    'databaseURL': 'https://glaucoma-4b682-default-rtdb.firebaseio.com/'
})
results_ref = db.reference('results')  # Will save results here

# βœ… 2. Load the Model
model = load_model('mobilenet_glaucoma_model.h5', compile=False)

# βœ… 3. Preprocess Image
def preprocess_image(img):
    img = img.resize((224, 224))
    img = np.array(img) / 255.0
    img = np.expand_dims(img, axis=0)
    return img

# βœ… 4. Grad-CAM Generation
def make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1'):
    """Generate Grad-CAM for the given image and model."""
    last_conv_layer = model.get_layer(last_conv_layer_name)
    grad_model = Model(inputs=model.inputs, outputs=[last_conv_layer.output, model.output])

    with tf.GradientTape() as tape:
        conv_outputs, predictions = grad_model(img_array)
        loss = predictions[:, 0]
    grads = tape.gradient(loss, conv_outputs)

    pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
    conv_outputs = conv_outputs[0]

    for i in range(conv_outputs.shape[-1]):
        conv_outputs[..., i] *= pooled_grads[i]

    heatmap = tf.reduce_mean(conv_outputs, axis=-1).numpy()
    heatmap = np.maximum(heatmap, 0)
    heatmap /= np.max(heatmap)

    return heatmap

# βœ… 5. Save Grad-CAM Overlay
def save_gradcam_image(original_img, heatmap, filename='gradcam.png', output_dir='results'):
    """Save the Grad-CAM overlay image and return its path."""
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    img = np.array(original_img.resize((224, 224)))
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    heatmap = np.uint8(255 * heatmap)

    heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
    overlay = cv2.addWeighted(img, 0.6, heatmap, 0.4, 0)

    filepath = os.path.join(output_dir, filename)
    cv2.imwrite(filepath, overlay)

    return filepath

@app.route('/')
def home():
    return "Glaucoma Detection Flask API is running!"

@app.route("/test_file")
def test_file():
    """Check if the Firebase service account JSON is present and readable."""
    filepath = "glaucoma-4b682-firebase-adminsdk-fbsvc-cd31fbe99d.json"
    if os.path.exists(filepath):
        return f"βœ… Service account file found at: {filepath}"
    else:
        return "❌ Service account JSON NOT found."

@app.route('/predict', methods=['POST'])
def predict():
    """Perform prediction and save results to Firebase."""
    if 'file' not in request.files:
        return jsonify({'error': 'No file uploaded'}), 400

    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No file selected'}), 400

    try:
        img = Image.open(file.stream).convert('RGB')
        img_array = preprocess_image(img)

        prediction = model.predict(img_array)[0]
        glaucoma_prob = 1 - prediction[0]
        normal_prob = prediction[0]
        result = 'Glaucoma' if glaucoma_prob > normal_prob else 'Normal'
        confidence = float(glaucoma_prob) if result == 'Glaucoma' else float(normal_prob)

        # Grad-CAM
        heatmap = make_gradcam(img_array, model, last_conv_layer_name='Conv2D_1')
        gradcam_filename = f"gradcam_{int(datetime.now().timestamp())}.png"
        save_gradcam_image(img, heatmap, filename=gradcam_filename)

        # Save to Firebase
        results_ref.push({
            'image_filename': file.filename,
            'prediction': result,
            'confidence': confidence,
            'gradcam_filename': gradcam_filename,
            'timestamp': datetime.now().isoformat()
        })

        return jsonify({
            'prediction': result,
            'confidence': confidence,
            'normal_probability': float(normal_prob),
            'glaucoma_probability': float(glaucoma_prob),
            'gradcam_image': gradcam_filename
        })

    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/results', methods=['GET'])
def results():
    """List all results from the Firebase database."""
    results_data = results_ref.get()
    if not results_data:
        results_data = []
    return jsonify(results_data)

@app.route('/gradcam/<filename>')
def get_gradcam(filename):
    """Serve the Grad-CAM overlay image."""
    filepath = os.path.join('results', filename)
    if os.path.exists(filepath):
        return send_file(filepath, mimetype='image/png')
    else:
        return jsonify({'error': 'File not found'}), 404

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860)