File size: 4,616 Bytes
2dff12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import zipfile
import pickle
from glob import glob
from pathlib import Path

import pandas as pd
import gradio as gr

from indexrl.training import (
    DynamicBuffer,
    create_model,
    save_model,
    explore,
    train_iter,
)
from indexrl.environment import IndexRLEnv
from indexrl.utils import get_n_channels, state_to_expression

data_dir = "data/"
os.makedirs(data_dir, exist_ok=True)

meta_data_file = os.path.join(data_dir, "metadata.csv")
if not os.path.exists(meta_data_file):
    with open(meta_data_file, "w") as fp:
        fp.write("Name,Channels,Path\n")


def save_dataset(name, zip):
    with zipfile.ZipFile(zip.name, "r") as zip_ref:
        data_path = os.path.join(data_dir, name)
        zip_ref.extractall(data_path)

    img_path = glob(os.path.join(data_path, "images", "*.npy"))[0]
    n_channels = get_n_channels(img_path)

    with open(meta_data_file, "a") as fp:
        fp.write(f"{name},{n_channels},{data_path}\n")
    meta_data_df = pd.read_csv(meta_data_file)
    return meta_data_df


def find_expression(dataset_name: str):
    meta_data_df = pd.read_csv(meta_data_file, index_col="Name")
    n_channels = meta_data_df["Channels"][dataset_name]
    data_dir = meta_data_df["Path"][dataset_name]

    image_dir = os.path.join(data_dir, "images")
    mask_dir = os.path.join(data_dir, "masks")

    cache_dir = os.path.join(data_dir, "cache")
    logs_dir = os.path.join(data_dir, "logs")
    models_dir = os.path.join(data_dir, "models")
    for dir_name in (cache_dir, logs_dir, models_dir):
        Path(dir_name).mkdir(parents=True, exist_ok=True)

    action_list = (
        list("()+-*/=") + ["sq", "sqrt"] + [f"c{c}" for c in range(n_channels)]
    )
    env = IndexRLEnv(action_list, 12)
    agent, optimizer = create_model(len(action_list))
    seen_path = os.path.join(cache_dir, "seen.pkl") if cache_dir else ""
    env.save_seen(seen_path)
    data_buffer = DynamicBuffer()

    i = 0
    while True:
        i += 1
        print(f"----------------\nIteration {i}")
        print("Collecting data...")
        data = explore(
            env.copy(),
            agent,
            image_dir,
            mask_dir,
            1,
            logs_dir,
            seen_path,
            n_iters=1000,
        )
        print(
            f"Data collection done. Collected {len(data)} examples. Buffer size = {len(data_buffer)}."
        )

        data_buffer.add_data(data)
        print(f"Buffer size new = {len(data_buffer)}.")

        agent, optimizer, loss = train_iter(agent, optimizer, data_buffer)

        i_str = str(i).rjust(3, "0")
        if models_dir:
            save_model(agent, f"{models_dir}/model_{i_str}_loss-{loss}.pt")
        if cache_dir:
            with open(f"{cache_dir}/data_buffer_{i_str}.pkl", "wb") as fp:
                pickle.dump(data_buffer, fp)

        with open(os.path.join(logs_dir, "tree_1.txt"), "r", encoding="utf-8") as fp:
            tree = fp.read()

        top_5 = data_buffer.get_top_n(5)
        top_5_str = "\n".join(
            map(
                lambda x: " ".join(state_to_expression(x[0], action_list))
                + " "
                + str(x[1]),
                top_5,
            )
        )

        yield tree, top_5_str


with gr.Blocks() as demo:
    gr.Markdown("# IndexRL")
    meta_data_df = pd.read_csv(meta_data_file)

    with gr.Tab("Find Expressions"):
        select_dataset = gr.Dropdown(
            label="Select Dataset",
            choices=meta_data_df["Name"].to_list(),
        )
        find_exp_btn = gr.Button("Find Expressions")
        stop_btn = gr.Button("Stop")
        out_exp_tree = gr.Textbox(label="Latest Expression Tree", interactive=False)
        best_exps = gr.Textbox(label="Best Expressions", interactive=False)

    with gr.Tab("Datasets"):
        dataset_upload = gr.File(label="Upload Data ZIP file")
        dataset_name = gr.Textbox(label="Dataset Name")
        dataset_upload_btn = gr.Button("Upload")

        dataset_table = gr.Dataframe(meta_data_df, label="Dataset Table")

    find_exp_event = find_exp_btn.click(
        find_expression, inputs=[select_dataset], outputs=[out_exp_tree, best_exps]
    )
    stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[find_exp_event])

    dataset_upload.upload(
        lambda x: ".".join(os.path.basename(x.orig_name).split(".")[:-1]),
        inputs=dataset_upload,
        outputs=dataset_name,
    )
    dataset_upload_btn.click(
        save_dataset, inputs=[dataset_name, dataset_upload], outputs=[dataset_table]
    )

demo.queue(concurrency_count=10).launch(debug=True)