File size: 6,586 Bytes
2dff12e 90ca6f7 2dff12e 90ca6f7 2dff12e d9703c6 2dff12e 90ca6f7 a89b932 90ca6f7 a89b932 90ca6f7 2dff12e a89b932 90ca6f7 2dff12e 90ca6f7 2dff12e 90ca6f7 2dff12e 90ca6f7 2dff12e 8d5ea31 2dff12e 90ca6f7 2dff12e a89b932 2dff12e 8d5ea31 2dff12e 90ca6f7 2dff12e 90ca6f7 a89b932 2dff12e 90ca6f7 2dff12e d9703c6 2dff12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import zipfile
import pickle
from glob import glob
from pathlib import Path
import pandas as pd
import gradio as gr
from indexrl.training import (
DynamicBuffer,
create_model,
save_model,
explore,
train_iter,
)
from indexrl.environment import IndexRLEnv
from indexrl.utils import get_n_channels, state_to_expression
max_exp_len = 12
data_dir = "data/"
global_logs_dir = os.path.join(data_dir, "logs")
os.makedirs(data_dir, exist_ok=True)
meta_data_file = os.path.join(data_dir, "metadata.csv")
if not os.path.exists(meta_data_file):
with open(meta_data_file, "w") as fp:
fp.write("Name,Channels,Path\n")
def save_dataset(name, zip):
with zipfile.ZipFile(zip.name, "r") as zip_ref:
data_path = os.path.join(data_dir, name)
zip_ref.extractall(data_path)
img_path = glob(os.path.join(data_path, "images", "*.npy"))[0]
n_channels = get_n_channels(img_path)
with open(meta_data_file, "a") as fp:
fp.write(f"{name},{n_channels},{data_path}\n")
meta_data_df = pd.read_csv(meta_data_file)
return meta_data_df, gr.Dropdown.update(choices=meta_data_df["Name"].to_list())
def get_tree(exp_num: int = 1, tree_num: int = 1):
tree_num = max(tree_num, 1)
tree_path = os.path.join(
global_logs_dir, f"tree_{int(exp_num)}_{int(tree_num)}.txt"
)
if os.path.exists(tree_path):
with open(tree_path, "r", encoding="utf-8") as fp:
tree = fp.read()
return tree
print(f"Tree at {tree_path} not found!")
return ""
def change_expression(exp_num: int = 1, tree_num: int = 1):
try:
paths = glob(os.path.join(global_logs_dir, f"tree_{int(exp_num)}_*.txt"))
except TypeError:
return "", gr.Slider.update()
tree_num = max(min(len(paths), tree_num), 1)
tree = get_tree(exp_num, tree_num)
return tree, gr.Slider.update(value=tree_num, maximum=len(paths), interactive=True)
def find_expression(dataset_name: str):
if dataset_name == "":
return ("", gr.Slider.update(value=1, interactive=False))
global global_logs_dir
meta_data_df = pd.read_csv(meta_data_file, index_col="Name")
n_channels = meta_data_df["Channels"][dataset_name]
data_dir = meta_data_df["Path"][dataset_name]
image_dir = os.path.join(data_dir, "images")
mask_dir = os.path.join(data_dir, "masks")
cache_dir = os.path.join(data_dir, "cache")
global_logs_dir = logs_dir = os.path.join(data_dir, "logs")
models_dir = os.path.join(data_dir, "models")
for dir_name in (cache_dir, logs_dir, models_dir):
Path(dir_name).mkdir(parents=True, exist_ok=True)
action_list = (
list("()+-*/=") + ["sq", "sqrt"] + [f"c{c}" for c in range(n_channels)]
)
env = IndexRLEnv(action_list, max_exp_len)
agent, optimizer = create_model(len(action_list))
seen_path = os.path.join(cache_dir, "seen.pkl") if cache_dir else ""
env.save_seen(seen_path)
data_buffer = DynamicBuffer()
i = 0
while True:
i += 1
print(f"----------------\nIteration {i}")
print("Collecting data...")
data = explore(
env.copy(),
agent,
image_dir,
mask_dir,
1,
logs_dir,
seen_path,
tree_prefix=f"tree_{int(i)}",
n_iters=1000,
)
print(
f"Data collection done. Collected {len(data)} examples. Buffer size = {len(data_buffer)}."
)
data_buffer.add_data(data)
print(f"Buffer size new = {len(data_buffer)}.")
agent, optimizer, loss = train_iter(agent, optimizer, data_buffer)
print("Loss:", loss)
i_str = str(i).rjust(3, "0")
if models_dir:
save_model(agent, f"{models_dir}/model_{i_str}_loss-{loss}.pt")
if cache_dir:
with open(f"{cache_dir}/data_buffer_{i_str}.pkl", "wb") as fp:
pickle.dump(data_buffer, fp)
tree = get_tree()
top_5 = data_buffer.get_top_n(5)
top_5_str = "\n".join(
map(
lambda x: " ".join(state_to_expression(x[0], action_list))
+ " "
+ str(x[1]),
top_5,
)
)
yield top_5_str, gr.Slider.update(value=i, maximum=i, interactive=True)
with gr.Blocks(title="IndexRL") as demo:
gr.Markdown("# IndexRL")
meta_data_df = pd.read_csv(meta_data_file)
with gr.Tab("Find Expressions"):
with gr.Row():
with gr.Column():
select_dataset = gr.Dropdown(
label="Select Dataset",
choices=meta_data_df["Name"].to_list(),
)
find_exp_btn = gr.Button("Find Expressions", variant="primary")
stop_btn = gr.Button("Stop", variant="stop")
best_exps = gr.Textbox(label="Best Expressions", interactive=False)
with gr.Column():
select_exp = gr.Slider(
value=1, label="Iteration", interactive=False, minimum=1, step=1
)
select_tree = gr.Slider(
value=1, label="Tree Number", interactive=False, minimum=1, step=1
)
out_exp_tree = gr.Textbox(
label="Latest Expression Tree", interactive=False
)
with gr.Tab("Datasets"):
dataset_upload = gr.File(label="Upload Data ZIP file")
dataset_name = gr.Textbox(label="Dataset Name")
dataset_upload_btn = gr.Button("Upload")
dataset_table = gr.Dataframe(meta_data_df, label="Dataset Table")
find_exp_event = find_exp_btn.click(
find_expression,
inputs=[select_dataset],
outputs=[best_exps, select_exp],
)
stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[find_exp_event])
select_exp.change(
fn=lambda x, y: change_expression(x, y),
inputs=[select_exp, select_tree],
outputs=[out_exp_tree, select_tree],
)
select_tree.change(
fn=lambda x, y: get_tree(x, y),
inputs=[select_exp, select_tree],
outputs=out_exp_tree,
)
dataset_upload.upload(
lambda x: ".".join(os.path.basename(x.orig_name).split(".")[:-1]),
inputs=dataset_upload,
outputs=dataset_name,
)
dataset_upload_btn.click(
save_dataset,
inputs=[dataset_name, dataset_upload],
outputs=[dataset_table, select_dataset],
)
demo.queue(concurrency_count=10).launch(debug=True)
|