File size: 6,586 Bytes
2dff12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ca6f7
 
2dff12e
90ca6f7
2dff12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9703c6
2dff12e
 
90ca6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a89b932
 
 
 
 
90ca6f7
 
 
 
a89b932
90ca6f7
 
2dff12e
a89b932
 
 
90ca6f7
2dff12e
 
 
 
 
 
 
 
90ca6f7
2dff12e
 
 
 
 
 
 
90ca6f7
2dff12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90ca6f7
2dff12e
 
 
 
 
 
 
 
 
 
8d5ea31
2dff12e
 
 
 
 
 
 
 
90ca6f7
2dff12e
 
 
 
 
 
 
 
 
 
 
a89b932
2dff12e
 
8d5ea31
2dff12e
 
 
 
90ca6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dff12e
 
 
 
 
 
 
 
 
90ca6f7
 
a89b932
2dff12e
 
90ca6f7
 
 
 
 
 
 
 
 
 
2dff12e
 
 
 
 
 
 
d9703c6
 
 
2dff12e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import zipfile
import pickle
from glob import glob
from pathlib import Path

import pandas as pd
import gradio as gr

from indexrl.training import (
    DynamicBuffer,
    create_model,
    save_model,
    explore,
    train_iter,
)
from indexrl.environment import IndexRLEnv
from indexrl.utils import get_n_channels, state_to_expression


max_exp_len = 12
data_dir = "data/"
global_logs_dir = os.path.join(data_dir, "logs")
os.makedirs(data_dir, exist_ok=True)

meta_data_file = os.path.join(data_dir, "metadata.csv")
if not os.path.exists(meta_data_file):
    with open(meta_data_file, "w") as fp:
        fp.write("Name,Channels,Path\n")


def save_dataset(name, zip):
    with zipfile.ZipFile(zip.name, "r") as zip_ref:
        data_path = os.path.join(data_dir, name)
        zip_ref.extractall(data_path)

    img_path = glob(os.path.join(data_path, "images", "*.npy"))[0]
    n_channels = get_n_channels(img_path)

    with open(meta_data_file, "a") as fp:
        fp.write(f"{name},{n_channels},{data_path}\n")
    meta_data_df = pd.read_csv(meta_data_file)
    return meta_data_df, gr.Dropdown.update(choices=meta_data_df["Name"].to_list())


def get_tree(exp_num: int = 1, tree_num: int = 1):
    tree_num = max(tree_num, 1)
    tree_path = os.path.join(
        global_logs_dir, f"tree_{int(exp_num)}_{int(tree_num)}.txt"
    )
    if os.path.exists(tree_path):
        with open(tree_path, "r", encoding="utf-8") as fp:
            tree = fp.read()

        return tree
    print(f"Tree at {tree_path} not found!")
    return ""


def change_expression(exp_num: int = 1, tree_num: int = 1):
    try:
        paths = glob(os.path.join(global_logs_dir, f"tree_{int(exp_num)}_*.txt"))
    except TypeError:
        return "", gr.Slider.update()

    tree_num = max(min(len(paths), tree_num), 1)

    tree = get_tree(exp_num, tree_num)

    return tree, gr.Slider.update(value=tree_num, maximum=len(paths), interactive=True)


def find_expression(dataset_name: str):
    if dataset_name == "":
        return ("", gr.Slider.update(value=1, interactive=False))

    global global_logs_dir
    meta_data_df = pd.read_csv(meta_data_file, index_col="Name")
    n_channels = meta_data_df["Channels"][dataset_name]
    data_dir = meta_data_df["Path"][dataset_name]

    image_dir = os.path.join(data_dir, "images")
    mask_dir = os.path.join(data_dir, "masks")

    cache_dir = os.path.join(data_dir, "cache")
    global_logs_dir = logs_dir = os.path.join(data_dir, "logs")
    models_dir = os.path.join(data_dir, "models")
    for dir_name in (cache_dir, logs_dir, models_dir):
        Path(dir_name).mkdir(parents=True, exist_ok=True)

    action_list = (
        list("()+-*/=") + ["sq", "sqrt"] + [f"c{c}" for c in range(n_channels)]
    )
    env = IndexRLEnv(action_list, max_exp_len)
    agent, optimizer = create_model(len(action_list))
    seen_path = os.path.join(cache_dir, "seen.pkl") if cache_dir else ""
    env.save_seen(seen_path)
    data_buffer = DynamicBuffer()

    i = 0
    while True:
        i += 1
        print(f"----------------\nIteration {i}")
        print("Collecting data...")
        data = explore(
            env.copy(),
            agent,
            image_dir,
            mask_dir,
            1,
            logs_dir,
            seen_path,
            tree_prefix=f"tree_{int(i)}",
            n_iters=1000,
        )
        print(
            f"Data collection done. Collected {len(data)} examples. Buffer size = {len(data_buffer)}."
        )

        data_buffer.add_data(data)
        print(f"Buffer size new = {len(data_buffer)}.")

        agent, optimizer, loss = train_iter(agent, optimizer, data_buffer)
        print("Loss:", loss)

        i_str = str(i).rjust(3, "0")
        if models_dir:
            save_model(agent, f"{models_dir}/model_{i_str}_loss-{loss}.pt")
        if cache_dir:
            with open(f"{cache_dir}/data_buffer_{i_str}.pkl", "wb") as fp:
                pickle.dump(data_buffer, fp)

        tree = get_tree()

        top_5 = data_buffer.get_top_n(5)
        top_5_str = "\n".join(
            map(
                lambda x: " ".join(state_to_expression(x[0], action_list))
                + " "
                + str(x[1]),
                top_5,
            )
        )

        yield top_5_str, gr.Slider.update(value=i, maximum=i, interactive=True)


with gr.Blocks(title="IndexRL") as demo:
    gr.Markdown("# IndexRL")
    meta_data_df = pd.read_csv(meta_data_file)

    with gr.Tab("Find Expressions"):
        with gr.Row():
            with gr.Column():
                select_dataset = gr.Dropdown(
                    label="Select Dataset",
                    choices=meta_data_df["Name"].to_list(),
                )
                find_exp_btn = gr.Button("Find Expressions", variant="primary")
                stop_btn = gr.Button("Stop", variant="stop")
                best_exps = gr.Textbox(label="Best Expressions", interactive=False)

            with gr.Column():
                select_exp = gr.Slider(
                    value=1, label="Iteration", interactive=False, minimum=1, step=1
                )
                select_tree = gr.Slider(
                    value=1, label="Tree Number", interactive=False, minimum=1, step=1
                )
                out_exp_tree = gr.Textbox(
                    label="Latest Expression Tree", interactive=False
                )

    with gr.Tab("Datasets"):
        dataset_upload = gr.File(label="Upload Data ZIP file")
        dataset_name = gr.Textbox(label="Dataset Name")
        dataset_upload_btn = gr.Button("Upload")

        dataset_table = gr.Dataframe(meta_data_df, label="Dataset Table")

    find_exp_event = find_exp_btn.click(
        find_expression,
        inputs=[select_dataset],
        outputs=[best_exps, select_exp],
    )
    stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[find_exp_event])
    select_exp.change(
        fn=lambda x, y: change_expression(x, y),
        inputs=[select_exp, select_tree],
        outputs=[out_exp_tree, select_tree],
    )
    select_tree.change(
        fn=lambda x, y: get_tree(x, y),
        inputs=[select_exp, select_tree],
        outputs=out_exp_tree,
    )

    dataset_upload.upload(
        lambda x: ".".join(os.path.basename(x.orig_name).split(".")[:-1]),
        inputs=dataset_upload,
        outputs=dataset_name,
    )
    dataset_upload_btn.click(
        save_dataset,
        inputs=[dataset_name, dataset_upload],
        outputs=[dataset_table, select_dataset],
    )

demo.queue(concurrency_count=10).launch(debug=True)