Call_model / app.py
disLodge's picture
Another update
a6161ba verified
raw
history blame
3.76 kB
import gradio as gr
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}] + history
messages.append({"role":"user","content":message})
reponse = ""
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
for part in client.chat_completion(
messages, max_tokens=max_tokens, streams=True, temperature=temperature,
top_p=top_p
):
token = part.choices[0].delta.content
if token:
response += token
history.append({"role":"user", "content": message})
history.append({"role":"assistant", "content": respond})
return history,""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
with gr.Blocks() as demo:
gr.Markdown("## Zephyr Chatbot with Custom UI")
chatbot = gr.Chatbot(type="messages", label="Chatbot")
state = gr.State([])
with gr.Row():
msg = gr.Textbox(label="Type your message...", scale=6)
send_btn = gr.Button("Send", scale=1)
role_dropdown = gr.Dropdown(choices=["SDE", "BA"], label="Select Role", value="SDE")
system = gr.Textbox(value="You are a friendly chatbot.", label="System message")
max_tokens = gr.Slider(1, 2048, value=512, label="Max tokens")
temperature = gr.Slider(0.1, 4.0, value=0.7, label="Temperature", step=0.1)
top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p", step=0.05)
with gr.Row():
clear_btn = gr.Button("Clear Chat")
dummy_btn = gr.Button("Dummy Action")
def handle_submit(message, history, system, max_tokens, temperature, top_p):
response_gen = response(message, history, system, max_tokens, temperature, top_p)
final_response = ""
for r in response_gen:
final_response = r
updated_history = history + [(message, final_response)]
return updated_history, updated_history, ""
send_btn.click(
handle_submit,
[msg, state, system, max_tokens, temperature, top_p],
[chatbot, state, msg],
)
msg.submit(
handle_submit,
[msg, state, system, max_tokens, temperature, top_p],
[chatbot, state, msg],
)
clear_btn.click(lambda: ([], [], ""), None, [chatbot, state, msg])
dummy_btn.click(lambda: gr.Info("Dummy action clicked!"), None, None)
if __name__ == "__main__":
demo.launch()