File size: 10,536 Bytes
41ea5e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import streamlit as st
import re
import os
from dotenv import load_dotenv
from openai import AzureOpenAI
import json
from nlp_parsed import parse_recruiter_query,prompt_enhancer
from SERP import query_making, serp_api_call
from apify import apify_call
from validate import validate_function, score_candidates
from postgres_db import fetch_from_saral_data, check_completeness, data_input, cur, conn, store_prompt
st.set_page_config(page_title="LinkedIn Recruiter Assistant", page_icon="🎯")
if "parsed_data" not in st.session_state:
st.session_state.parsed_data = {}
if "matched_results" not in st.session_state:
st.session_state.matched_results = []
if "unmatched_results" not in st.session_state:
st.session_state.unmatched_results = []
if "progress_placeholder" not in st.session_state:
st.session_state.progress_placeholder = None
if "progress" not in st.session_state:
st.session_state.progress = None
if "current_page" not in st.session_state:
st.session_state.current_page = 0
if "run_search" not in st.session_state:
st.session_state.run_search = False
if "user_input" not in st.session_state:
st.session_state.user_input = ""
st.header("Saral AI")
user_input = st.text_area(
"Enter your query here:",
placeholder="Enter your query here",
key="user_input_box",
value=st.session_state.user_input # always pull from session_state
)
st.session_state.user_input = user_input
# Show query parsing immediately (live preview)
if user_input.strip():
parsed_data = parse_recruiter_query(user_input)
st.session_state.parsed_data = parsed_data
if "error" in parsed_data:
st.error(parsed_data["error"])
elif parsed_data.get("is_indian") == False:
print("Our platform is not allowing search for out of india")
else:
with st.expander("Query", expanded=True):
col1, col2 = st.columns([1, 1])
with col1:
st.markdown(f'**Job Title:** {parsed_data.get("job_title", "None")}')
st.markdown(f'**Skills:** {parsed_data.get("skills", "None")}')
st.markdown(
f'**Experience:** {parsed_data.get("experience","None")} years of Experience'
)
st.markdown(f'is_indian :{parsed_data.get("is_indian","None")}')
with col2:
st.markdown(f'**Location:** {parsed_data.get("location", "None")}')
st.markdown(
f'**Work Preference:** {parsed_data.get("work_preference", "None")}'
)
st.markdown(f'**Job Type:** {parsed_data.get("job_type", "None")}')
# Enhance prompt button
if st.button("Enhance Prompt", use_container_width=True):
enhanced = prompt_enhancer(st.session_state.user_input)
# Store only in your own session_state variable
st.session_state.user_input = enhanced
# force rerun so text_area shows updated text
# st.experimental_rerun()
# Only fetch SERP + Apify when button clicked
if st.button(
"Enter",
use_container_width=True,
disabled=(parsed_data.get("is_indian") is False) # disable only if explicitly False
):
st.session_state.current_page = 0 # reset pagination
st.session_state.run_search = True
if st.session_state.run_search:
if not user_input.strip():
st.warning("Please enter a valid query.")
st.stop()
store_prompt(conn,user_input,parsed_data)
# Progress bar
st.session_state.progress_placeholder = st.empty()
st.session_state.progress = st.session_state.progress_placeholder.progress(0)
status = st.empty()
if user_input.strip() and "error" not in parsed_data:
query, location = query_making(parsed_data) # getting query like https:://linkedin.com --- AND location list
print(query)
### pagination concept
if st.session_state.current_page >= 0 :
results_per_page = 10
start = st.session_state.current_page * results_per_page
serp_data = serp_api_call(
query,
start= start,
results_per_page=10
)
saral_data, remain_urls = fetch_from_saral_data(serp_data, conn)
print(remain_urls)
st.session_state.progress.progress(30)
serp_json = {}
apify_json = {}
if len(remain_urls) >= 1:
for idx, i in enumerate(remain_urls,start=1):
serp_json[idx] = i
apify_json = apify_call(serp_json)
st.session_state.progress.progress(70)
if apify_json:
total_candidates = saral_data + apify_json
else:
total_candidates = saral_data
data_input(total_candidates)
# Validate funciton (location)
matched, unmatched = validate_function(location, total_candidates)
st.session_state.progress.progress(70)
matched = score_candidates(parsed_data , matched)
st.session_state.matched_results = matched
st.session_state.unmatched_results = unmatched
st.session_state.progress.progress(100)
st.session_state.progress_placeholder.empty()
st.session_state.progress = None
st.session_state.progress_placeholder = None
else:
st.warning("Please enter a valid query.")
if st.session_state.matched_results:
# length of Matched and unmatched profiles
col1, col2 = st.columns([1, 1])
with col1:
st.success(f"Matched Profiles: {len(st.session_state.matched_results)}")
with col2:
st.warning(f"Unmatched Profiles: {len(st.session_state.unmatched_results)}")
col1, col2, col3 = st.columns([1,2,1])
with col1:
if st.button("< Previous") and st.session_state.current_page > 0:
st.session_state.current_page -= 1
st.session_state.run_search = True
with col2:
st.write(f'Current Page {st.session_state.current_page + 1}')
with col3:
if st.button("Next >"):
st.session_state.current_page += 1
st.session_state.run_search = True
st.subheader("Candidates Profiles")
for idx, profiles in enumerate(st.session_state.matched_results, start=1):
with st.expander(f"{idx}. {profiles.get('fullName', 'Unknown')}"):
st.json(profiles)
with st.expander(
f"{idx}. {profiles.get('fullName', 'Unknown')} • Score: {profiles.get('score','None')} ", expanded=True
):
col1, col2 = st.columns([1, 2])
with col1:
image = profiles.get("profilePic")
temp_image = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRDVO09x_DXK3p4Mt1j08Ab0R875TdhsDcG2A&s"
if profiles.get("profilePic"):
st.image(profiles.get("profilePic"), width=150)
else:
st.image(temp_image, width=150)
st.markdown(f"**Location:** {profiles.get('addressWithCountry','-')}")
st.markdown(f"**Email:** {profiles.get('email','None')}")
experiences = profiles.get("experiences", [])
open_to_work = True # default
for exp in experiences:
caption = exp.get("caption", "")
if "Present" in caption: # if still working
open_to_work = False
break
st.markdown(f"**Open to Work:** {'False' if not open_to_work else 'True'}")
st.markdown(
f"**LinkedIn:** [LinkedIn]({profiles.get('linkedinUrl','')})"
)
with col2:
st.markdown(f"### {profiles.get('fullName')}")
if profiles.get("headline"):
st.markdown(f"*{profiles.get('headline')}*")
skills_raw = profiles.get("skills", [])
skill_titles = [
s.get("title")
for s in skills_raw
if isinstance(s, dict) and "title" in s
]
if skill_titles:
st.markdown("**Skills:** " + " • ".join(skill_titles[:10]))
if profiles.get("about"):
about = profiles.get("about")
st.markdown(
"**About:** " + (about[:250] + "..." if len(about) > 250 else about)
)
if profiles.get("experiences"):
st.markdown("**Experience**")
for exp in profiles["experiences"]:
title = exp.get("title", "")
subtitle = exp.get("subtitle") or exp.get("metadata", "")
caption = exp.get("caption", "")
# Print main line
st.write(f"• {title} at {subtitle} — {caption}")
# Print description if available
if exp.get("description"):
for desc in exp["description"]:
if isinstance(desc, dict) and "text" in desc:
st.markdown(f" - {desc['text']}")
if profiles.get("is_complete"):
st.markdown(f'{profiles.get("is_complete")}')
if st.session_state.unmatched_results:
st.subheader("Unmatched Profiles")
for idx, profiles in enumerate(st.session_state.unmatched_results, start=1):
st.markdown(
f"{idx}, {profiles.get('fullName', 'Unknown')} - {profiles.get('addressWithCountry', 'Unknown')} [LINKEDIN]({profiles.get('linkedinUrl', 'Unknown')})"
)
|