Spaces:
Running
Running
tryout no plot
Browse files
streamlit_simulation/app_backup_hug.py
CHANGED
@@ -132,29 +132,23 @@ def load_lightgbm_model():
|
|
132 |
def load_transformer_model_and_dataset():
|
133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
model.to(device)
|
146 |
-
model.eval()
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
except Exception as e:
|
156 |
-
st.error(f"❌ Fehler beim Laden des Transformer-Modells: {e}")
|
157 |
-
raise e
|
158 |
|
159 |
@st.cache_data
|
160 |
def load_data():
|
|
|
132 |
def load_transformer_model_and_dataset():
|
133 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
134 |
|
135 |
+
# Load model
|
136 |
+
model = load_moment_model()
|
137 |
+
checkpoint_path = hf_hub_download(
|
138 |
+
repo_id="dlaj/energy-forecasting-files",
|
139 |
+
filename="transformer_model/model_final.pth",
|
140 |
+
repo_type="dataset"
|
141 |
+
)
|
142 |
+
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
|
143 |
+
model.to(device)
|
144 |
+
model.eval()
|
|
|
|
|
145 |
|
146 |
+
# Datasets
|
147 |
+
train_dataset = InformerDataset(data_split="train", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
148 |
+
test_dataset = InformerDataset(data_split="test", forecast_horizon=FORECAST_HORIZON, random_seed=13)
|
149 |
+
test_dataset.scaler = train_dataset.scaler
|
150 |
|
151 |
+
return model, test_dataset, device
|
|
|
|
|
|
|
|
|
152 |
|
153 |
@st.cache_data
|
154 |
def load_data():
|